|
|
发表于 20-2-2014 05:59 PM
|
显示全部楼层
太久沒玩integration了。。我嘗試回答。應該是用integration by parts解決。
Let u = y; du/dy = 1;
dv/dy = 1/(y^2-2y-3) = 1/(y-3)(y+1)
now we have to integrate dv.
1/(y^2-2y-3) = 1/(y-3)(y+1)
把兩個分母拆開
1/(y-3)(y+1) = A/(y+1) + B/(y-3) = 1
Let y = -1
so B = -1/4
Let y = 3
so A = 1/4
integrate of dv/dy = 1/4(y+1) - 1/4(y-3)
v = 1/4 { ln |y+ 1| - ln |y-3| }
Thus, integrate of
8 y dy
4 y^2-2y-3
= {y . 1/4 [ ln |y+ 1| - ln |y-3| ] } - [1/4 [ ln |y+ 1| - ln |y-3| ]
= { 8 . 1/4 [ ln 9/ln 5 ] - 4 . 1/4 [ ln 5/ln 1] } - 1/4 [ ln 9/ln 5 ] - 0
= 2 [ln 9/ln 5 ] - 1/4 [ ln 9/ln 5 ]
= 1 3/4 [ln 9/ln5]
本帖最后由 liang_2002 于 20-2-2014 06:04 PM 编辑
|
评分
-
查看全部评分
|