查看: 1891|回复: 2
|
number theory
[复制链接]
|
|
using the definition of congruence, prove that if x, r and q are integers and x=r (mod q), then x^n=r^n (mod q) where n is a positive integer.
Hence, show that 19^n+39^n=2 (mod 8) for every integer n>=1 |
|
|
|
|
|
|
|
发表于 12-7-2010 12:11 AM
|
显示全部楼层
用 Binomial Expansion 或 Mathematical Induction 都可以证明
应该符合 “using the definition of congruence”
下面的就是
19=2*8+3
39=4*8+7
照上面做,最后
3+7=2(mod8) |
|
|
|
|
|
|
|
发表于 25-8-2010 08:24 PM
|
显示全部楼层
x=r (mod q) implies x-r is divisible by q.
x^n-r^n is divisible by q and thus x^n-r^n is divisible by p.
So x^n=r ^n(mod q)
Firstly, we prove that if x is odd, then x^2=1(mod8)
let x = 2m+1, x^2=4m(m+1)+1, m(m+1) is even, so x^2=1(mod8).
So we can say that for x is odd, x^(2n)=1(mod8)
If n is even, 19^n+39^n=1+1=2 (mod 8)
If n is odd, 19^n+39^n=19*19^(n-1)+39*39^(n-1)=19+39=2(mod8) (n-1 is even) |
|
|
|
|
|
|
| |
本周最热论坛帖子
|