查看: 2672|回复: 10
|
number theory
[复制链接]
|
|
发表于 7-5-2010 08:13 PM
|
显示全部楼层
if gcd(a,m)=1
then exist p and q such that
pa+qm=1
so pba+qbm=b
and pba=b-qbm
let x=pb
then ax=b mod(m) |
|
|
|
|
|
|
|

楼主 |
发表于 19-9-2010 12:02 AM
|
显示全部楼层
who can teach me part ii)?? |
|
|
|
|
|
|
|

楼主 |
发表于 31-10-2010 09:51 AM
|
显示全部楼层
solve each of the congruences x^3=2(mod3) and x^3=2(mod5).Deduce the set of positive integers which satisfy both the congruences.
Hence,find the positive integers x and y which satisfy the equation
x^3+15xy=12152 |
|
|
|
|
|
|
|
发表于 1-11-2010 03:59 PM
|
显示全部楼层
本帖最后由 puangenlun 于 1-11-2010 04:00 PM 编辑
solve each of the congruences x^3=2(mod3) and x^3=2(mod5).Deduce the set of positive integers which ...
數學神童 发表于 31-10-2010 09:51 AM 
x^3=2mod3
x^3=2mod5
[size=15.8333px]
[size=15.8333px]
[size=15.8333px]
[size=15.8333px]so x^3=2mod15
[size=15.8333px]
[size=15.8333px]
[size=15.8333px]
[size=15.8333px]x^3=15p+2
因此x^3的个位数只能是2或7
[size=15.8333px]所以x的个位数只能是3或8
[size=15.8333px]不妨设
[size=15.8333px]x=15p+3
[size=15.8333px]x=15p+8
但是当x=15p+3时不符合[size=15.8333px]x^3=2mod3
[size=15.8333px]因此[size=15.8333px]x=15p+8
[size=15.8333px]验证8^3=2mod15
因此(15p+8)^3=2mod15
设另有解y=15p+q,q<>8,0<=q<14
验算得y^3<>2mod15
故x=15p+8是通解。
---------------------------------------------------------
x^3+15xy=12152
x^3=12152-15xy
x^3=2mod3
x^3=2mod5
so x=15p+8
[size=15.8333px]x^3+15xy=12152
[size=15.8333px]x(x^2+15y)=12152
[size=15.8333px]代入x=8,23,38,........
得到x(x^2+15y)=8*1519=98*124=248*49=................
因为x,y>0,所以得到唯一解x=8,y=97
答案可能不完善(有欠考虑)。 |
|
|
|
|
|
|
|
发表于 16-11-2010 01:51 PM
|
显示全部楼层
最上面(B)
ax+by=k mod n
cx+dy=l mod n
acx+bcy=ck mod n
acx+ady=al mod n
=>(bc-ad)y=(ck-al) mod n
from (A)
if GCD(bc-ad,n)=1
then exists y such that
(bc-ad)y=k mod n
for any integer k
so y=(ck-al)(bd-ad)^(-1)
so x=.......................... |
|
|
|
|
|
|
|
发表于 16-11-2010 02:10 PM
|
显示全部楼层
29y=9 mod 16
y=11*29^(-1)=11*5=7 mod 16
7x=5
x=5*7^(-1)=5*7=3 mod 16
x=3 mod 16
y=7 mod 16 |
|
|
|
|
|
|
|
发表于 13-12-2010 04:28 PM
|
显示全部楼层
Let n be an element of natural number and n is greater than or equal to 2,
(i) If n = 6k+1 or n =6k+5, with k is integer, prove that 2^n + n^2 =0 (mod 3).
(ii) If 2^n + n^2 is prime number, prove that n= 3 (mod 6) |
|
|
|
|
|
|
|
发表于 13-12-2010 04:41 PM
|
显示全部楼层
(i) If n = 6k+1 or n =6k+5, with k is integer, prove that 2^n + n^2 =0 (mod 3).
6k + 1 = odd; 6k + 5 = odd
6k + 1 = 1mod3, 6k + 5 = 2mod3
n = ±1mod3 (odd)
2^n + n^2 = (-1mod3)^(odd) + (±1mod3)^2 = - 1 + 1 = 0mod3
(ii) If 2^n + n^2 is prime number, prove that n= 3 (mod 6)
n ≥ 2, 2^n + n^2 ≥ 8, so 2^n + n^2 = odd
2^n always even, so n = odd
since n is odd, it can only be 1/3/5 mod 6
but when n = 1 or 5 mod 6, 2^n + n^2 = 0 mod 3 (not prime)
so when 2^n + n^2 = prime, n = 3 mod 6 |
|
|
|
|
|
|
|
发表于 14-12-2010 10:51 AM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 14-12-2010 02:12 PM
|
显示全部楼层
x = r mod q >>> x^n = r^n mod q
19^n = 3^n mod 8
39^n = (-1)^n mod 8
when n is odd, 19^n + 39^n = 3 - 1 mod 8 = 2 mod 8
when n is even, 19^n + 39^n = 1 + 1 mod 8 = 2 mod 8 |
|
|
|
|
|
|
| |
本周最热论坛帖子
|