佳礼资讯网

 找回密码
 注册

ADVERTISEMENT

查看: 1198|回复: 1

second order differential equation

[复制链接]
发表于 17-1-2010 07:26 PM | 显示全部楼层 |阅读模式
using the substitution x=e^z,show that the differential equation
x^2(d^2y/dx^2)+px(dy/dx)+qy=0 where p and q are constants,can be transformed into the differential equation
(d^2y/dz^2)+r(dy/dz)+sy=0 where r and s are constants to be determined in terms of p and q.
回复

使用道具 举报


ADVERTISEMENT

发表于 19-1-2010 02:57 AM | 显示全部楼层
x=e^z
dx/dz=e^z   -> dz/dx = 1/e^z = 1/x

dy/dx = dy/dz * dz/dx = dy/dz * 1/x
d^2y/dx^2 = d(dy/dx)/dx = d(dy/dz * 1/x)/dz * dz/dx = (d^2y/dz^2 * 1/x) * 1/x = d^2y/dz^2 * 1/x^2

所以
x^2(d^2y/dx^2)+px(dy/dx)+qy=0
变成
x^2(d^2y/dz^2 * 1/x^2) + px(dy/dz * 1/x) + qy = d^2y/dz^2 + pdy/dz + qy = d^2y/dz^2 + rdy/dz + sy = 0
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

 

所属分类: 欢乐校园


ADVERTISEMENT



ADVERTISEMENT



ADVERTISEMENT

ADVERTISEMENT


版权所有 © 1996-2023 Cari Internet Sdn Bhd (483575-W)|IPSERVERONE 提供云主机|广告刊登|关于我们|私隐权|免控|投诉|联络|脸书|佳礼资讯网

GMT+8, 11-11-2024 09:51 PM , Processed in 0.125736 second(s), 24 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表