佳礼资讯网

 找回密码
 注册

ADVERTISEMENT

查看: 1647|回复: 4

各位数学高手请进,DE问题。。。!!!

[复制链接]
发表于 15-2-2009 12:39 PM | 显示全部楼层 |阅读模式
小弟有一些问题向要想各位数学高手请进....


问题一:
A 1500 gallon tank initially contains 600 gallons of water with 5 lbs of salt dissolved in it. Water
enters the tank at a rate of 9 gal/hr and the water entering the tank has a salt concentration of
1/5(1+(cos(t)) lbs/gal.
If a well mixed solution leaves the tank at a rate of 6 gal/hr, how much salt is in the tank when it
overflows?

[Hint : set up the initial value problem, find Q(t), for the flow rate of the water entering (given), the
concentration of the salt in the water entering (we’ve got that), the flow rate of the water leaving
(given) and the concentration of the salt in the water exiting (not given).]

谢谢各位的帮忙,小弟感激不尽。。。!!!
回复

使用道具 举报


ADVERTISEMENT

发表于 16-2-2009 08:42 PM | 显示全部楼层
Let S(t) be the amount of salt at time t

S'(t)=(flow of salt into tank at time t) - (flow of salt out of tank at time t)
       =9 x 1/5(1+(cos(t))  - 6x (concentration of solution)
       = 9/5(1+(cos(t)) - 6x(amount of salt in tank at time t / volume of the solution at time t)
       =9/5(1+(cos(t)) -6 x (S(t) / (600+3t))
(volume =600+3t becoz initial volume =600  and increase 3 for every hour)

S'(t) =9/5(1+(cos(t))  - [2/(200+t)] x S(t)   ----- (1)
S(0)=5                                                           ----- (2)

(1)==>  S'(t)+[2/(200+t)] x S(t) =9/5 [1+(cos(t))]            (linear DE)

integrate [2/(200+t)] = ln(200+t)^2
integrating factor is (200+t)^2

d/dt [(200+t)^2 x S(t)]= 9/5 [1+(cos(t)] [(200+t)^2]


[(200+t)^2 x S(t)]= integrate {9/5 [1+(cos(t)] [(200+t)^2]} dt




之后就把积分里的那堆东西展开,再一个一个积分,再把S(0)=5 代进去,就找到S(t) 的 equation 了 。中间的过程应该要用到 integration by part.... 复杂。

至于 t 要代多少应该可以算得到。
回复

使用道具 举报

 楼主| 发表于 25-2-2009 02:01 PM | 显示全部楼层
原帖由 hihi23 于 16-2-2009 08:42 PM 发表
Let S(t) be the amount of salt at time t

S'(t)=(flow of salt into tank at time t) - (flow of salt out of tank at time t)
       =9 x 1/5(1+(cos(t))  - 6x (concentration of solution)
       = 9/5 ...


问题二:

回复

使用道具 举报

 楼主| 发表于 5-3-2009 09:24 PM | 显示全部楼层
原帖由 zxteh 于 25-2-2009 02:01 PM 发表


问题二:



没人帮小弟吗?
回复

使用道具 举报

发表于 13-3-2009 10:36 PM | 显示全部楼层
第一題好像是那閒大學的tutorial來的嗎?
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

 

ADVERTISEMENT


本周最热论坛帖子本周最热论坛帖子

ADVERTISEMENT



ADVERTISEMENT

ADVERTISEMENT


版权所有 © 1996-2023 Cari Internet Sdn Bhd (483575-W)|IPSERVERONE 提供云主机|广告刊登|关于我们|私隐权|免控|投诉|联络|脸书|佳礼资讯网

GMT+8, 27-2-2025 01:58 AM , Processed in 0.154917 second(s), 24 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表