|

楼主 |
发表于 14-4-2006 03:08 PM
|
显示全部楼层
这一招绝!
因为 a/(b-c) { (c-a)/b + (a-b)/c } = 2a^2/bc
所以 LHS = 3 + 2(a^3 +b^3+c^3)/abc = 3 + 6 = 9
因为 a^3 + b^3 + c^3 = 3abc (上面有证明) |
|
|
|
|
|
|
|

楼主 |
发表于 16-4-2006 10:32 PM
|
显示全部楼层
设 x,y,z 为实数,且
(x-y)/(1+xy) + (y-z)/(1+yz) + (z-x)(1+xz) = 0
证明 x,y,z 中必有两个相等。 |
|
|
|
|
|
|
|

楼主 |
发表于 30-4-2006 10:59 PM
|
显示全部楼层
已知 abc = 1 , a+b+c=0 求
a/(ab+a+1)+ b/(bc+b+1) + c/(ca+c+1) + a(1/b + 1/c) + b(1/c + 1/a) + c(1/a + 1/b) = ? |
|
|
|
|
|
|
|
发表于 13-5-2006 11:30 PM
|
显示全部楼层
原帖由 dunwan2tellu 于 30-4-2006 10:59 PM 发表
已知 abc = 1 , a+b+c=0 求
a/(ab+a+1)+ b/(bc+b+1) + c/(ca+c+1) + a(1/b + 1/c) + b(1/c + 1/a) + c(1/a + 1/b) = ?
a/(ab+a+1)+ b/(bc+b+1) + c/(ca+c+1)
=a/(ab+a+1)+ ab/(abc+ab+a) + abc/(ac(ab)+abc+ab)
=a/(ab+a+1) + ab/(ab+a+1) + 1/(ab+a+1)
= 1
a(1/b + 1/c) + b(1/c + 1/a) + c(1/a + 1/b)
= a(ab+ac) + b(ab+bc) + c(bc+ac)
= a^2(b+c) + b^2(a+c) + c^2(a+b)
= -(a^3 + b^3 + c^3)
= -3abc
= -3
所以
a/(ab+a+1)+ b/(bc+b+1) + c/(ca+c+1) + a(1/b + 1/c) + b(1/c + 1/a) + c(1/a + 1/b)
= 1 + (-3) = -2 |
|
|
|
|
|
|
|
发表于 13-5-2006 11:37 PM
|
显示全部楼层
原帖由 dunwan2tellu 于 16-4-2006 10:32 PM 发表
设 x,y,z 为实数,且
(x-y)/(1+xy) + (y-z)/(1+yz) + (z-x)(1+xz) = 0
证明 x,y,z 中必有两个相等。
可把它转换成tan(A-B) + tan(B-C) + tan(C-A)
再利用tanX + tanY + tanZ = tanXtanYtanZ 的identity
看出X,Y,Z之中至少有一个是0。
得x=y或x=z或y=z. QED |
|
|
|
|
|
|
|

楼主 |
发表于 14-5-2006 04:41 PM
|
显示全部楼层
答对了 hamilan911 !
试试这题(不难)
某 4 位数是个平方数。若在各位数(every digit)上加 1 则形成另一个平方数。求此数! |
|
|
|
|
|
|
|
发表于 14-5-2006 08:26 PM
|
显示全部楼层
原帖由 dunwan2tellu 于 14-5-2006 04:41 PM 发表
答对了 hamilan911 !
试试这题(不难)
某 4 位数是个平方数。若在各位数(every digit)上加 1 则形成另一个平方数。求此数!
设那四位数为abcd.
1000a+100b+10c+d = p^2 -(1)
1000(a+1)+100(b+1)+10(c+1)+(d+1) = q^2 -(2)
(2)-(1)
1111 = (q+p)(q-p)
而1111=1111 * 1 ,101 * 11
q+p = 1111 , q-p = 1 -> q=556 , p=555 (但555^2 = 308025)
所以 q+p = 101 , q-p = 11 -> q=56 , p=45
45^2 = 2025
所以那数目是2025. |
|
|
|
|
|
|
|

楼主 |
发表于 14-5-2006 11:02 PM
|
显示全部楼层
原帖由 hamilan911 于 14-5-2006 08:26 PM 发表
设那四位数为abcd.
1000a+100b+10c+d = p^2 -(1)
1000(a+1)+100(b+1)+10(c+1)+(d+1) = q^2 -(2)
(2)-(1)
1111 = (q+p)(q-p)
而1111=1111 * 1 ,101 * 11
q+p = 1111 , q-p = 1 -> ...
完全正确!夺冠有望!哈哈 |
|
|
|
|
|
|
|

楼主 |
发表于 19-5-2006 05:51 PM
|
显示全部楼层
求所有的实数 x,y,z 使到
x^3 + y^3 + z^3 = (x+y+z)^3 |
|
|
|
|
|
|
|

楼主 |
发表于 24-5-2006 01:27 PM
|
显示全部楼层
Quadratic Equation(Form 6 + 一点点 A-level + 一点点独中程度 ) :
求所有的实数 a , 使到 f(x) = 2x^2 - 4ax + a^2 + a 在 0 =< x =< 3 的范围内的最小值是 0 .
[ 本帖最后由 dunwan2tellu 于 24-5-2006 01:28 PM 编辑 ] |
|
|
|
|
|
|
|
发表于 17-4-2007 01:03 PM
|
显示全部楼层
原帖由 dunwan2tellu 于 24-5-2006 01:27 PM 发表
Quadratic Equation(Form 6 + 一点点 A-level + 一点点独中程度 ) :
求所有的实数 a , 使到 f(x) = 2x^2 - 4ax + a^2 + a 在 0 =< x =< 3 的范围内的最小值是 0 .
(答案 1)
f(x) = 2x^2 - 4ax + a^2 + a >=0 在 0 =< x =< 3.
f '(x) = 4x-4a
f(x) = minumum when f '(x) = 0
4x-4a=0, x = a
f(a) = 2a^2 - 4a^2 + a^2 + a = - a^2 + a = 0
a = 0 or a = 1
x = a = 0 or 1, 0 =< x =< 3
(答案 2)
f(x) = 2x^2 - 4ax + a^2 + a
= 2(x-a)^2 - a^2 + a
f(x) >=0,
2(x-a)^2 - a^2 + a >= 0
for f(x)=0
x = a
-a^2 + a = 0
a = 0 or a = 1.
x = a = 0 or 1, 0 =< x =< 3 |
|
|
|
|
|
|
|

楼主 |
发表于 17-4-2007 06:09 PM
|
显示全部楼层
有趣的是,如果 a = -1 的话
f(x) = 2x^2 + 4x
f'(x) = 4x + 4
f'(x) = 0 ==> x = -1 is local minimum .
但是在 0 =< x =< 3 之间的时候 ,f'(x) > 0 。因此 f(x) is increasing function at 0 =< x =< 3.
所以 min{f(x)} = f(0) = 0 也符合条件 .所以 a 也可以 = -1 (还有另一个 value of a 也符合,总共 4 个 )
[ 本帖最后由 dunwan2tellu 于 17-4-2007 06:18 PM 编辑 ] |
|
|
|
|
|
|
|
发表于 18-4-2007 08:17 AM
|
显示全部楼层
f(x) = 2x^2 - 4ax + a^2 + a >=0 在 0 =< x =< 3.
f '(x) = 4x-4a = 4(x-a)
(1) f(0) = 0, f'(x) = positive in 0<=x<=3,
a = 0 @ a = -1
f'(x) = 4x >= 0 @ f'(x) ==4(x+1)> 0 for 0<=x<=3
a = 0 & a = -1 is the answer.
(2)f(3)=0 f'(x) = negative in 0<=x<=3,
a = 2 @ a = 9
f'(x) = 4(x-2) not always negatie , f'(x) = 4(x-9) <0 for 0<=x<=3
a = 9 is also the asnwer.
(3) f'(x)=0, and min{f(x)} is at 0<=x<=3
x = a, f(x) = f(a) = 0
a = 0 or a = 1
min{f(x)} is at x = 0 or x = 1, 0<=x<=3
a = 0 & a = 1 is the answer
答案
a = -1 , 0 , 1 , 9 |
|
|
|
|
|
|
|

楼主 |
发表于 18-4-2007 06:38 PM
|
显示全部楼层
原帖由 kee020041 于 18-4-2007 08:17 AM 发表
f(x) = 2x^2 - 4ax + a^2 + a >=0 在 0 =< x =< 3.
f '(x) = 4x-4a = 4(x-a)
(1) f(0) = 0, f'(x) = positive in 0<=x<=3,
a = 0 @ a = -1
f'(x) = 4x >= 0 ...
全中! |
|
|
|
|
|
|
|
发表于 8-3-2010 01:46 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 9-3-2010 08:02 PM
|
显示全部楼层
原来这里有卧虎藏龙的高手~怎么近几年没人发贴了?
andyl 发表于 8-3-2010 01:46 PM 
等你来的关系。 |
|
|
|
|
|
|
|
发表于 10-3-2010 09:58 AM
|
显示全部楼层
|
|
|
|
|
|
| |
本周最热论坛帖子
|