|
发表于 25-10-2010 02:49 PM
|
显示全部楼层
本帖最后由 kelfaru 于 25-10-2010 03:16 PM 编辑
(y+z)^x + (z+x)^y > y^x + x^y > 1 (待解决!)
从别个数学论坛看来的,用 x^y > x/(x+y) for x>0, 0<y<1 应该可以证得到~
x^y > x/(x+y)
y^x > y/(x+y)
x^y + y^x > 1
听说这是从 Bernoulli's inequality 得来的,小弟也不懂如何证明~ |
|
|
|
|
|
|
|
发表于 25-10-2010 03:02 PM
|
显示全部楼层
从上楼的概念,应该可以这样证~ |
|
|
|
|
|
|
|
发表于 30-11-2010 01:26 PM
|
显示全部楼层
本帖最后由 Allmaths 于 30-11-2010 05:14 PM 编辑
这是OMK 2008的不等式题目。。。
Let a, b, c be positive real numbers. Show that
a^2 + b^2 + c^2 + ab + bc + ca + 6 >= 4(a + b + c) |
|
|
|
|
|
|
|
发表于 2-12-2010 12:46 AM
|
显示全部楼层
这是OMK 2008的不等式题目。。。
Let a, b, c be positive real numbers. Show that
a^2 + b^2 + c^ ...
Allmaths 发表于 30-11-2010 01:26 PM 
 |
|
|
|
|
|
|
|
发表于 2-12-2010 12:56 AM
|
显示全部楼层
kelfaru 发表于 2-12-2010 12:46 AM 
功力不够。。。不是看得很明白。。。 |
|
|
|
|
|
|
|

楼主 |
发表于 2-12-2010 09:29 PM
|
显示全部楼层
本帖最后由 mathlim 于 2-12-2010 10:21 PM 编辑
(a + b - 2)^2 + (b + c - 2)^2 + (c + a - 2)^2 ≥ 0
a^2 + b^2 + 4 + 2ab - 4a - 4b + b^2 + c^2 + 4 + 2bc - 4b - 4c + c^2 + a^2 + 4 + 2ca - 4c - 4a ≥ 0
2a^2 + 2b^2 + 2c^2 + 2ab + 2bc + 2ca + 12 ≥ 8a + 8b + 8c
a^2 + b^2 + c^2 + ab + bc + ca + 6 ≥ 4(a + b + c) |
|
|
|
|
|
|
|

楼主 |
发表于 2-12-2010 09:34 PM
|
显示全部楼层
本帖最后由 mathlim 于 2-12-2010 10:22 PM 编辑
(a+b+c-3)^2 + (a-1)^2 + (b-1)^2 + (c-1)^2 ≥ 0
a^2 + b^2 + c^2 + 9 + 2ab + 2bc + 2ca - 6a - 6b - 6c + a^2 + 1 - 2a + b^2 + 1 - 2b + c^2 + 1 - 2c ≥ 0
2a^2 + 2b^2 + 2c^2 + 2ab + 2bc + 2ca + 12 ≥ 8a + 8b + 8c
a^2 + b^2 + c^2 + ab + bc + ca + 6 ≥ 4(a+b+c) |
|
|
|
|
|
|
|
发表于 2-12-2010 09:55 PM
|
显示全部楼层
(a + b - 2)^2 + (b + c - 2)^2 + (c + a - 2)^2 ≥ 0
a^2 + b^2 + 4 + 2ab - 4a - 4b + b^2 + c^2 + 4 ...
mathlim 发表于 2-12-2010 09:29 PM 
mathlim大大,那个6应该没关系的吧?只差一个6就和题目一样了。。。 |
|
|
|
|
|
|
|

楼主 |
发表于 2-12-2010 10:23 PM
|
显示全部楼层
回复 108# Allmaths
是我漏掉了。已编辑。谢谢! |
|
|
|
|
|
|
|
发表于 2-12-2010 10:26 PM
|
显示全部楼层
功力不够。。。不是看得很明白。。。
Allmaths 发表于 2-12-2010 12:56 AM 
对不起,我的证法错了~ |
|
|
|
|
|
|
| |
本周最热论坛帖子
|