|
发表于 2-9-2004 06:25 PM
|
显示全部楼层
我这里有两题:
The function g is defined by g : x -> 2x^2 - 6x + 7 for the domain x ≥ k.
Find the smallest value of k for which g has an inverse. [1]
For this value of k, find an expression for g^(-1) and state the restriction on x. [3]
另外一题。
A young man, a woman, two brothers and an old lady board the MRT train. There is an empty row consisting of 9 seats. In how many ways can
i) the young man and the old lady be seated on adjoining seats?
ii) the woman be seated at either end of the row of seats?
At the next station, 4 school children board the train.
iii) In how many ways can all of them be arranged in that row of seats such that the young man and the two brothers are seated together on adjoining seats and the woman and the old lady are separated? [4] |
|
|
|
|
|
|
|
发表于 3-9-2004 02:12 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 3-9-2004 04:18 PM
|
显示全部楼层
jwyong,答案对了!
再来!
1. a) A committee of 5 students is to be chosen from a team of 4 boys and 3 girls.
The leader of the team is a boy and the co-leader is a girl.
Either the leader or the co-leader must be chosen but not both.
Find the number of possible committees if there must be more boys than girls on the committee. [4]
b) 4 different blue flags, 3 different red flags and 2 different yellow flags are to be arranged in a straight line on a balcony. (No two flags are identical.)
In how many ways can this be done if
i) if there is no restriction,
ii) the two yellow flags must be placed at the two ends of the straight line.
iii) The red flags must not be placed next to each other. [5]
---------------------------------------------------------------------------------------------------------------------
2. You are presented with a 8-letter word ‘CONCLUDE’.
i) How many ways can you rearrange the letters if there is no restriction? [1]
ii) How many ways can the letters be rearranged so that all the consonants are grouped together? [2]
iii) How many ways to rearrange the letters are there if the vowels are to be grouped together? [2]
iv) How many ways can you rearrange the letters so that the words you obtain have the following sequence of vowels, O U E? [3]
[ Last edited by 無聊人 on 3-9-2004 at 04:23 PM ] |
|
|
|
|
|
|
|
发表于 3-9-2004 07:56 PM
|
显示全部楼层
1)(a) 75
(b) 1)362880
2)5040
3)332640
2)(1)40320
(2)4320
(3) 120
Is it right ? |
|
|
|
|
|
|
|
发表于 3-9-2004 10:17 PM
|
显示全部楼层
chwk87 于 3-9-2004 07:56 PM 说 :
1)(a) 75
(b) 1)362880
2)5040
3)332640
2)(1)40320
(2)4320
(3) 120
Is it right ?
这些答案看起来好像是对的,你能解释一下你是怎样拿到你的答案呢?
其他网友呢?试试看吧!很有挑战性的……
[ Last edited by 無聊人 on 6-9-2004 at 05:15 PM ] |
|
|
|
|
|
|
|
发表于 6-9-2004 03:24 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 6-9-2004 03:34 PM
|
显示全部楼层
255_(10) = ( 1 1 1 1 1 1 1 1 )_2
reason: 1 * 2^7 + 1 * 2^6 + ... + 1* 2^0 = (2^8 - 1) / (2-1) [finite geometric series : janjang geometri terhingga ]
= 256 - 1 = 255. |
|
|
|
|
|
|
|
发表于 6-9-2004 06:05 PM
|
显示全部楼层
Permutation & Combination 难道那么难吗?没有人会吗? |
|
|
|
|
|
|
|
发表于 7-9-2004 10:29 AM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 7-9-2004 01:38 PM
|
显示全部楼层
正确答案:
1a) 7
1b) i) 362880
ii) 10080
iii) 151200
2 i) 20160
ii) 1440
iii) 2160
iv) 3360 |
|
|
|
|
|
|
|
发表于 10-9-2004 08:34 PM
|
显示全部楼层
还有什么题目吗??
相信大家刚考完percuabaan SPM吧~~~
谁能把各州的题目post上来以作参考~~~
感激不尽!!! |
|
|
|
|
|
|
|
楼主 |
发表于 11-9-2004 10:10 PM
|
显示全部楼层
find the value of constant a such that, for all values of the constant b, one of the root of the equation
2x^3+ax+4 = b(x-2) is 2.
a) when a has this value, find the set of value of b such taht the given equation has 3 real and distinct roots.
b) when a=-10 and b=-12, find the real and complex roots of the given equation.
a)a=-10 b>-4 bcan not be 14
b)2, -1(+-)2i
thankyou
pipi:请大家尽量用中文发表!!谢谢!!
[ Last edited by pipi on 12-9-2004 at 12:57 PM ] |
|
|
|
|
|
|
|
发表于 12-9-2004 05:31 PM
|
显示全部楼层
我想问一下statistic的 Varians 和 sisihan piawai 有什么实际用途?
我的老师只是叫我背formula,考试问就答。我感觉上好象有点读死书的感觉,请问在哪一方面会用到Varians 和 sisihan piawai呢? |
|
|
|
|
|
|
|
发表于 13-9-2004 01:01 PM
|
显示全部楼层
kensai 于 12-9-2004 17:31 说 :
我想问一下statistic的 Varians 和 sisihan piawai 有什么实际用途?
我的老师只是叫我背formula,考试问就答。我感觉上好象有点读死书的感觉,请问在哪一方面会用到Varians 和 sisihan piawai呢?
这要看回一些 statistik 的用处。基本上,我们用 statistik 来 summarize 我们的 data。而最基本的方法就是找它的 central tendency (不懂中文叫什么)和 dispersion (不懂中文叫什么)。
测量 central tendency 基本上就像寻找 data 的中心点;以便我们可以用一个 value 来代表我们的 data。在这方面我们可用 mean,mode,median;就象在班上老师用你各科成绩的 mean 来决定你的名次。
然而有时单单用 central tendency 还不够,例如两位学生在测量一个物体的重量(三次)的数据如下:
A: 0,50,100
B:45,50,55
这两位学生的 mean 和 median 都是 50。如果要深入的推算谁测量得较准,那就必须算 dispersion. Dispersion 就像在算每个 data 跟mean 的差距,差距越小就越准确。如以上的例子,B学生测量得较准。在算 dispersion 这方面,varians 和 sisihan piawai 是较长用的方法。
希望我的解说你会明白。如想要深入了解,不妨多参考一些 statistik 的书籍。 |
|
|
|
|
|
|
|
发表于 13-9-2004 06:07 PM
|
显示全部楼层
怎么 Intergrate (5X^2 +6)^2?
还有能不能 Intergrate (2x)(sin2x)? |
|
|
|
|
|
|
|
发表于 14-9-2004 09:25 AM
|
显示全部楼层
kensai 于 13-9-2004 06:07 PM 说 :
怎么 Intergrate (5X^2 +6)^2?
还有能不能 Intergrate (2x)(sin2x)?
将 (5X^2 +6)^2 展开为 25x^4 + 60x^2 + 36 即可。
至于 (2x)(sin2x), 我们可用 "部分积分"(integration by parts )来解。 |
|
|
|
|
|
|
|
发表于 14-9-2004 09:57 AM
|
显示全部楼层
cheekwan1984 于 6-9-2004 15:24 说 :
把
255 base10(Decimal) 变成 BCD(binary code decimal)
答案是什么??请教一下!
谢谢
pipi: 暂时封楼。这问题将被移到
中学数学讨论区-限于课业的问题
[url]http://chinese.cari. ...
看你打算用什么 format 如是 8421 那 255 应是
0010 0101 0101 |
|
|
|
|
|
|
|
发表于 14-9-2004 03:49 PM
|
显示全部楼层
flash 于 13-9-2004 01:01 PM 说 :
这要看回一些 statistik 的用处。基本上,我们用 statistik 来 summarize 我们的 data。而最基本的方法就是找它的 central tendency (不懂中文叫什么)和 dispersion (不懂中文叫什么)。
测量 central ...
central tendency 应该是叫集中趋势, dispersion好像叫离散趋势。 |
|
|
|
|
|
|
|
发表于 16-9-2004 05:39 PM
|
显示全部楼层
pipi 于 2/2/2003 09:25 说 :
将 (5X^2 +6)^2 展开为 25x^4 + 60x^2 + 36 即可。
至于 (2x)(sin2x), 我们可用 "部分积分"(integration by parts )来解。
er..
对不起,除了expand的方法外,还有其他方法吗?
EX:(5X^2 +6)^c 给予 C 是 constant
"我们可用 "部分积分"(integration by parts )来解。"
那到底是怎样解呢?可以详细说明吗?谢谢! |
|
|
|
|
|
|
|
发表于 17-9-2004 02:03 PM
|
显示全部楼层
|
|
|
|
|
|
| |
本周最热论坛帖子
|