|
发表于 16-6-2010 01:42 AM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 17-6-2010 02:41 PM
|
显示全部楼层
为什么我的问题不能用计算机检查答案??? 只出现maths error... |
|
|
|
|
|
|
|
发表于 17-6-2010 09:53 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 22-6-2010 01:52 AM
|
显示全部楼层
请问 l 5/(1+x) l < 1/(1-x) - 3 不要画graph的话可以怎样做??? |
|
|
|
|
|
|
|
发表于 22-6-2010 08:05 PM
|
显示全部楼层
-( 1/(1-x) - 3 ) < 5/(1+x) < 1/(1-x) - 3 |
|
|
|
|
|
|
|
发表于 23-6-2010 12:07 PM
|
显示全部楼层
-( 1/(1-x) - 3 ) < 5/(1+x) < 1/(1-x) - 3
puangenlun 发表于 22-6-2010 08:05 PM 
我最后做出来的答案是 0< (3x^2 + 6x - 7)/(1 - x^2)
我老师给的答案是 -1< x < 0.523 |
|
|
|
|
|
|
|
发表于 23-6-2010 07:11 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 23-6-2010 08:53 PM
|
显示全部楼层
补习时给的...
-( 1/(1-x) - 3 ) < 5/(1+x) < 1/(1-x) - 3
3 - 1/(1-x) < 5/(1+x) < 1/(1-x) -3
(3-3x-1)/(1-x) < 5/(1+x) < (1-3+3x)/(1-x)
(2-3x)/(1-x) < 5/(1+x) < (3x-2)/(1-x)
(2-3x)(1+x)/(1-x^2) < 5(1-x)/(1-x^2) < (3x-2)(1+x)/(1-x^2)
(2+2x-3x-3x^2)/(1-x^2) < (5-5x)/(1-x^2) < (3x+3x^2-2-2x)/(1-x^2)
(2-x-3x^2)/(1-x^2) < (5-5x)/(1-x^2) < (3x^2+x-2)/(1-x^2)
RHS
(3x^2+x-2)/(1-x^2) > (5-5x)/(1-x^2)
(3x^2+6x-7)/(1-x^2) > 0
LHS
(2-x-3x^2)/(1-x^2) < (5-5x)/(1-x^2)
(-3+4x-3x^2)/(1-x^2) < 0
请各位高手帮小弟看看有什么错误吗???
还有最后正确的答案是什么??? |
|
|
|
|
|
|
|
发表于 24-6-2010 06:44 PM
|
显示全部楼层
对不起各位,小弟抄错题目...真是"一失足成千古恨"....不好意思  |
|
|
|
|
|
|
|
发表于 16-8-2010 01:53 AM
|
显示全部楼层
Prove that for all positive numbers a,b,c
(a/√(a^2 + 8bc)) + (b/√(b^2 + 8ca)) + (c/√(c^2 + 8ab)) >= 1 |
|
|
|
|
|
|
|
发表于 24-9-2010 04:22 PM
|
显示全部楼层
Prove that for all positive numbers a,b,c
(a/√(a^2 + 8bc)) + (b/√(b^2 + 8ca)) + (c/√(c^2 + 8ab ...
kelfaru 发表于 16-8-2010 01:53 AM 
看看这里吧...
解答 |
|
|
|
|
|
|
|
发表于 4-10-2010 05:03 PM
|
显示全部楼层
再来两题吧~
Prove that a^3 + b^3 + c^3 + 15abc <= 2(a + b + c)(a^2 + b^2 + c^2)
Prove that ((a^2)b + (b^2)c + (c^2)a)(a(b^2) + b (c^2) + c(a^2))>=9(abc)^2 |
|
|
|
|
|
|
|

楼主 |
发表于 7-10-2010 02:07 PM
|
显示全部楼层
最近又再碰一些证明题,
这两题比较容易,我来玩玩!
(a^2)b + (b^2)c + (c^2)a ≥ 3abc (均值不等式)
a(b^2) + b(c^2) + c(a^2) ≥ 3abc (均值不等式)
两式相乘:
((a^2)b + (b^2)c + (c^2)a)(a(b^2) + b(c^2) + c(a^2)) ≥ 9(abc)^2
2(a+b+c)(a^2+b^2+c^2) = 2a^3+2b^3+2c^3+2(a^2)b+2(b^2)c+2(c^2)a+2a(b^2)+2b(c^2)+2c(a^2)
a^3+b^3+c^3+2(a^2)b+2(b^2)c+2(c^2)a+2a(b^2)+2b(c^2)+2c(a^2)
= a^3+b^3+c^3+(a^2)b+(a^2)b+(b^2)c+(b^2)c+(c^2)a+(c^2)a+a(b^2)+a(b^2)+b(c^2)+b(c^2)+c(a^2)+c(a^2) ≥ 15abc (均值不等式)
两边各加上 a^3+b^3+c^3 得
a^3 + b^3 + c^3 + 15abc ≤ 2(a + b + c)(a^2 + b^2 + c^2) |
|
|
|
|
|
|
|
发表于 7-10-2010 08:34 PM
|
显示全部楼层
回复 73# mathlim
不愧是mathlim,厉害厉害~
再来一题...
(a,b,c),(d,e,f),(g,h,i),(j,k,l)是正数,
证
(adgj+behk+cfil)^4 <= (a^4 + b^4 + c^4)(d^4 + e^4 + f^4)(g^4 + h^4 + i^4)(j^4 + k^4 + l^4)
应该是用柯西不等式... |
|
|
|
|
|
|
|

楼主 |
发表于 9-10-2010 11:21 AM
|
显示全部楼层
再来两题吧~
再来两题吧~
Prove that a^3 + b^3 + c^3 + 15abc <= 2(a + b + c)(a^2 + b^2 + c^2)
Prove that ((a^2)b + (b^2)c + (c^2)a)(a(b^2) + b (c^2) + c(a^2))>=9(abc)^2
kelfaru 发表于 4-10-2010 05:03 PM 
其实你是不是少给了条件'for all positive numbers a,b,c'。 |
|
|
|
|
|
|
|

楼主 |
发表于 9-10-2010 11:30 AM
|
显示全部楼层
(a,b,c),(d,e,f),(g,h,i),(j,k,l)是正数,
证
(adgj+behk+cfil)^4 <= (a^4 + b^4 + c^4)(d^4 + e^4 + f^4)(g^4 + h^4 + i^4)(j^4 + k^4 + l^4)
应该是用柯西不等式...
kelfaru 发表于 7-10-2010 08:34 PM 
谢谢你的提示、暗示、明示!
(a^4 + b^4 + c^4)(d^4 + e^4 + f^4) ≥ [(ad)^2 + (be)^2 +(cf)^2]^2
(g^4 + h^4 + i^4)(j^4 + k^4 + l^4) ≥ [(gj)^2 + (hk)^2 +(il)^2]^2
两式相乘:
(a^4 + b^4 + c^4)(d^4 + e^4 + f^4)(g^4 + h^4 + i^4)(j^4 + k^4 + l^4)
≥ [(ad)^2 + (be)^2 +(cf)^2]^2 [(gj)^2 + (hk)^2 +(il)^2]^2
= {[(ad)^2 + (be)^2 +(cf)^2][(gj)^2 + (hk)^2 +(il)^2]}^2
≥ [(adgj+behk+cfil)^2]^2
= (adgj+behk+cfil)^4 |
|
|
|
|
|
|
|
发表于 10-10-2010 10:32 PM
|
显示全部楼层
|
|
|
|
|
|
|

楼主 |
发表于 11-10-2010 06:19 PM
|
显示全部楼层
哪里?哪里?大家互相学习。
我在这里学到不少东西。 |
|
|
|
|
|
|
|
发表于 17-10-2010 12:26 AM
|
显示全部楼层
做了好久都做不到~请帮忙下
x,y,z > 0
Prove (x+y)^z + (x+z)^y + (y+z)^x > 2 |
|
|
|
|
|
|
|
发表于 17-10-2010 12:30 AM
|
显示全部楼层
|
|
|
|
|
|
| |
本周最热论坛帖子
|