|
|

楼主 |
发表于 18-4-2015 07:25 PM
|
显示全部楼层
|
|
|
|
|
|
|
|
|
|

楼主 |
发表于 18-4-2015 07:36 PM
|
显示全部楼层
原來還有這個技巧,真的讓我受益良多!
另外,我在trigonometric卡著了。希望妳能夠幫我解決以下問題。.gif)
prove the given trigonometric identities.
(a) cos 3x = 4 cos^3 x - 3 cos x
(b) sin 3x = 3 sin x - 4 sin^3 x
(c) cos 4z = 8 cos^4 z - 8 cos^2 z + 1 = 8 sin^4 z - 8 sin^2 + 1
(d) 1 - tan^2 3y / 1 + tan^2 3y = cos 6y
這課是我的弱項
不知道妳有沒有一些做題技巧,希望妳能告訴我。.gif)
|
|
|
|
|
|
|
|
|
|
|
发表于 18-4-2015 07:48 PM
|
显示全部楼层
一般上我们会尽量让denominator没有任何surd,也就是square root。当然,你不换其实你老师也不能说你错。
关于
sin -x = - sin x
cos -x = cos x
这个其实看graph 就好
|
|
|
|
|
|
|
|
|
|
|
发表于 18-4-2015 08:08 PM
|
显示全部楼层
本帖最后由 YetSin 于 18-4-2015 08:10 PM 编辑
a) cos 3x = 4 cos^3 x - 3 cos x
cos 3x
= cos (x+2x)
= cos x cos 2x - sin x sin 2x
= cos x (2 cos^2 x - 1) - sin x (2 sin x cos x)
= 2 cos^3 x - cos x - 2 sin^2 x cos x
= 2 cos^3 x - cos x - 2 cos x (1- cos^2 x)
= 2 cos^3 x - cos x - 2 cos x + 2 cos^3 x
= 4 cos^3 x - 3 cos x
b) sin 3x = 3 sin x - 4 sin^3 x
sin 3x
= sin (2x+x)
= sin 2x cos x + sin x cos 2x
= 2 sin x cos x (cos x) + sin x (1-2 sin^2 x)
= 2 sin x cos^2 x + sin x - 2sin^3 x
= 2 sin x (1-sin^2 x) + sin x - 2sin^3 x
= 2 sin x - 2 sin^3 x + sin x - 2 sin^3 x
= 3 sin x - 4 sin^3 x
c) cos 4z = 8 cos^4 z - 8 cos^2 z + 1 = 8 sin^4 z - 8 sin^2 z + 1
cos 4z
= cos^2 2z - sin^2 2z
= (2cos^2 z - 1)^2 - (2sin z cos z)^2
= 4 cos^4 z - 4 cos^2 z + 1 - 4 sin^2 z cos^2 z
= 4 cos^4 z - 4 cos^2 z + 1 - 4 cos^2 z (1-cos^2 z)
= 4 cos^4 z - 4 cos^2 z + 1 - 4 cos^2 z + 4 cos^4 z
= 8 cos^4 z - 8 cos^2 z + 1 (answer 1)
= 8 cos^2 z (cos^2 z -1) + 1
= 8 (1- sin^2 z) (- sin^2 z) + 1
= 8 sin^4 z - 8 sin^2 z +1 (answer 2)
d) 1 - 2tan^2 3y / 1 + tan^2 3y = cos 6y (你题目打少一个2)
1- 2(tan^2 3y)/(1+ tan^2 3y)
= 1 - 2(tan^2 3y)/(1+ tan^2 3y) * (cos^2 3y)/(cos^2 3y)
= 1 - 2(sin^2 3y)/(cos^2 3y+sin^2 3y)
= 1 - 2sin^2 3y/(1)
= 1- 2sin^2 3y
= cos 6y
|
|
|
|
|
|
|
|
|
|
|
发表于 18-4-2015 08:25 PM
|
显示全部楼层
a) tan 2x / 1 + sec 2x = tan x
tan 2x / (1+ sec 2x)
= tan 2x / (1 + sec 2x) * cos 2x/cos 2x
= sin 2x / (cos2x + 1)
= 2 sin x cos x / (2 cos^2 x - 1 + 1)
= 2 sin x cos x / 2 cos^2 x
= sin x / cos x
= tan x
b) sin x + sin 2x / 1 + cos x + cos 2x = tan x (放bracket啊,我不知道你的denominator和numerator有多长啊,要人帮忙解题也方便一下解题的吧)
(sin x + sin 2x) / (1+ cos x + cos 2x)
= (sin x + 2 sinx cos x) / (1 + cos x + 2 cos^2 x - 1)
= (sin x + 2 sinx cos x) / ( 2 cos^2 x + cos x)
= (sin x)(1+2 cos x) / (cos x)(1+2 cos x)
= sin x / cos x
= tan x
c) cos^2 x - cos 2x / sin^2 x + cos 2x = tan^2 x
(cos^2 x - cos 2x) / (sin^2 x + cos 2 x)
= (cos^2 x - (2 cos^2 x - 1)) / (sin^2 x + (1 - 2 sin^2 x))
= (1 - cos^2 x)/(1- sin^2 x)
= sin^2 x / cos^2 x
= tan^2 x
d) csc x - 2 cos x cot 2x = 2 sin x
csc x - 2 cos x cot 2x
= (1/sin x) - 2 cos x (cos 2x/sin 2x)
= (1/sin x) - 2 cos x ((1 - 2 sin^2 x)/(2sin x cos x))
= (1/sin x) - (1- 2 sin^2 x)/sin x
= (1-(1-2sin^2 x))/ sin x
= 2 sin^2 x / sin x
= 2 sin x
e) 2 tan 0.5y / 1 + tan^2 0.5y = sin y
2 tan 0.5y / (1 + tan^2 0.5y)
= 2 tan 0.5y / (1 + tan^2 0.5y) * cos^2 0.5y / cos^2 0.5y
= 2 sin 0.5y cos 0.5y / (cos^2 0.5y + sin^2 0.5y)
= sin y / 1
= sin y
做这种题目最主要就是看你对identity的理解和能够运用到多灵活,没有什么特别技巧。
|
|
|
|
|
|
|
|
|
|
|
发表于 18-4-2015 11:34 PM
|
显示全部楼层
@YetSin 他要知道你的性别
btw 数学这种没有天分就靠后天努力。
类似的问题解1000次后就会记得怎么做的了。 
|
|
|
|
|
|
|
|
|
|
|
发表于 19-4-2015 01:57 AM
|
显示全部楼层
男的...没什么好了解的,偶尔闲得发呆就上来看有没有数学题做而已...
这种数学主要都是把eqn的形式变来变去而已。像这种trigo的问题,我个人是偏爱把全部都换去sin和cos,然后只用sin和cos的identity来solve。 |
|
|
|
|
|
|
|
|
|
|

楼主 |
发表于 20-4-2015 04:07 PM
|
显示全部楼层
我想問 2 sin 3y = sin 6y 嗎..?
如果“是!” , 其中的原理架構是什麼..?
如果“不是!” , 你能解釋一下 >>> 為什麼 1- 2sin^2 3y = cos 6y
另外,請幫我解以下數學題:
Q1: Given that cos 40 = m and sin 10 = n ,express each of the following in terms of m and n.
(a) cos 30 (ans : m(1 - n^2)^1/2 + n(1 - m^2)^1/2 )
(b) sin 80 (ans : 2m(1 - m^2)^1/2 )
(c) cos 20 (ans : 1 - 2n^2 )
Q2: It is given that cos A = -(4/5) and sin B = -(12/13) ,where A is in the second quadrant and B is in the third quadrant .Without using a calculator ,find the value of tan(A - B). (ans : 63/16 )
Q3: Given that tan X = -(sqrt 5)/2 , where X is an obtuse angle ,find the value of sin (X/2) without using a calculator. (ans : (sqrt 30)/6 )
Q4: It is given that A is an obtuse angle and cos A = -(sqrt 5)/3 . Without using a calculator .find the value of each of the following.
(a) tan 3A (ans : (22/35)(sqrt 5 ))
(b) cos 4A (ans : -(79/81))
Q5: Express
(a) sin^2 x in terms of cos 2x (ans : (1 - cos 2x)/2 )
(b) cos^2 x in terms of cos 2x (ans : (cos 2x + 1)/2 )
(c) cos^2 2x in terms of cos 4x (ans : (cos 4x + 1)/2 )
Hence,prove that sin^4 x + cos^4 x = (1/4)(3 + cos 4x). >>>順便問問這是什麼東西..?
|
|
|
|
|
|
|
|
|
|
|

楼主 |
发表于 20-4-2015 04:25 PM
|
显示全部楼层
yea,you're right.
I comprehend your meaning but I still have many questions want to ask ya.
Please help me to deal with these questions ,each of the following.
Q1: If A,B and C are angles of a triangle ,prove each of the following.
(a) sin(A + B) = sin C
(b) tan C = (tan A + tan B)/(tan A + tan B - 1)
Q2: Prove that sin 2x/(1 + cos 2x) = tan x .Hence ,show that
(a) tan 15 = 2 - 3^1/2
(b) tan 67.5 = 2^1/2 + 1
Q3: Using the substitution t = tan A/2 ,prove each of the following identities.
(a) (1 - cos A)/sin A = tan A/2
(b) tan A/(1 + sec A) = tan A/2
Q4: Using the substitution t = tan x ,prove each of the following identities.
(a) (1 - cos 2x)/(1 + cos 2x) = tan^2 x
(b) csc 2x + cot 2x = cot x
|
|
|
|
|
|
|
|
|
|
|
发表于 20-4-2015 07:18 PM
|
显示全部楼层
本帖最后由 YetSin 于 20-4-2015 07:45 PM 编辑
我想問 2 sin 3y = sin 6y 嗎..?
不等于
sin 6y = 2 sin 3y cos 3y
為什麼 1- 2sin^2 3y = cos 6y
cos 2x = 1 - 2 sin^2 x
let x = 3y
cos 6y = 1 - 2 sin^2 3y
Q1: Given that cos 40 = m and sin 10 = n ,express each of the following in terms of m and n.
(a) cos 30 (ans : m(1 - n^2)^1/2 + n(1 - m^2)^1/2 )cos 30
= cos (40-10)
= cos 40 cos 10 + sin 40 sin 10
= m \sqrt(1 - sin^2 10) + n \sqrt(1- cos^2 40)
= m \sqrt(1-n^2) + n \sqrt(1-m^2)
(b) sin 80 (ans : 2m(1 - m^2)^1/2 )
sin 80
= sin (40*2)
= 2 sin 40 cos 40
= 2 (\sqrt(1-cos^2 40)) m
= 2m \sqrt(1-m^2)
(c) cos 20 (ans : 1 - 2n^2 )
cos 20
= cos (10*2)
= cos^2 10 - sin^2 10
= (1-sin^2 10) - n^2
= 1 - n^2 - n^2
= 1 - 2 n^2
Q2: It is given that cos A = -(4/5) and sin B = -(12/13) ,where A is in the second quadrant and B is in the third quadrant .Without using a calculator ,find the value of tan(A - B). (ans : 63/16 )
cos A = -4/5
sin A = \sqrt (1 - cos^2 A)
=3/5 (positive because A is in second quadrant)
sin B = -12/13
cos B = \sqrt (1 - sin^2 B)
= -5/13 (negative because B is in third quadrant)
tan (A-B)
= sin (A-B) / cos (A-B)
= (sin A cos B - sin B cos A) / (cos A cos B + sin A sin B)
= [(3/5)(-5/13) - (-12/13)(-4/5)] / [(-4/5)(-5/13) + (3/5)(-12/13)]
= [-3/13 - 48/65] / [4/13 -36/65]
= [-15/65 - 48/65] / [20/65 - 36/65]
= (-63/65) / (-16/65)
= 63/16
Q3: Given that tan X = -(sqrt 5)/2 , where X is an obtuse angle ,find the value of sin (X/2) without using a calculator. (ans : (sqrt 30)/6 )
X is obtuse angle, X is in second quadrant.
90<X<180
45<X/2<90
sin (X/2) is positive
tan X = -\sqrt5 / 2
1 + tan^2 X = sec^2 X
sec X = \sqrt (1 + tan^2 X)
= -3/2 (negative because X is in second quadrant, cos X is negative)
cos X = -2/3
cos X = 1 - 2 sin^2 (X/2)
-2/3 = 1 - 2 sin^2 (X/2)
2 sin^2 (X/2) = 5/3
sin^2 X/2 = 5/6
sin X/2
= \sqrt (5/6)
= \sqrt(5)/\sqrt(6) * \sqrt(6)/\sqrt(6)
= \sqrt(30) / 6
Q4: It is given that A is an obtuse angle and cos A = -(sqrt 5)/3 . Without using a calculator .find the value of each of the following.
(a) tan 3A (ans : (22/35)(sqrt 5 ))
A is obtuse, A is in second quadrant.
90<A<180
sin A = \sqrt (1 - cos^2 A)
= 2/3 (positive, second quadrant)
sin 2A = 2 sin A cos A = 2 (2/3)(-\sqrt(5)/3) = -4\sqrt(5) / 9
cos 2A = 1 - 2 sin^2 A = 1 - 2 (2/3)^2 = 1/9
tan 3A
= sin 3A / cos 3A
= sin (2A+A) / cos (2A+A)
= [sin 2A cos A + sin A cos 2A] / [cos 2A cos A - sin 2A sin A]
= [(-4\sqrt(5) / 9) (-\sqrt(5) /3) + (2/3)(1/9)] / [(1/9)(-\sqrt(5)/3) - (-4\sqrt(5) / 9)(2/3)]
= [20/27 + 2/27] / [-\sqrt(5)/27 + 8\sqrt(5)/27]
= 22/[7\sqrt(5)] * sqrt(5) / sqrt(5)
= 22\sqrt(5)/35
(b) cos 4A (ans : -(79/81))
cos 4A
= cos (2A*2)
= 2 cos^2 (2A) - 1
= 2 (1/9)^2 - 1
= 2/81 - 1
= -79/81
Q5: Express
(a) sin^2 x in terms of cos 2x (ans : (1 - cos 2x)/2 )
cos 2x = 1 - 2 sin^2 x
sin^2 x = (1 - cos 2x) / 2
(b) cos^2 x in terms of cos 2x (ans : (cos 2x + 1)/2 )
cos 2x = 2 cos^2 x - 1
cos^2 x = (cos 2x + 1) / 2
(c) cos^2 2x in terms of cos 4x (ans : (cos 4x + 1)/2 )
cos 4x = 2 cos^2 2x -1
cos^2 2x = (cos 4x + 1)/2
Hence,prove that sin^4 x + cos^4 x = (1/4)(3 + cos 4x).
sin^4 x + cos^4 x
= (sin^2 (x))^2 + (cos^2(x))^2
= ((1-cos 2x)/2)^2 + ((cos 2x + 1)/2)^2
= (1 - 2 cos 2x + cos^2 2x)/4 + (cos^2 2x + 2 cos 2x + 1)/4
= (2 + 2 cos^2 2x)/4
= (2 + (cos 4x+1)) / 4
= 1/4 * (3+ cos 4x)
就是要你用你之前做出来的答案来derive answer,不要从头做起。
|
|
|
|
|
|
|
|
|
|
|
发表于 20-4-2015 07:42 PM
|
显示全部楼层
Q1: If A,B and C are angles of a triangle ,prove each of the following.
(a) sin(A + B) = sin CA+B+C = 180
sin (A+B)
= sin (180-C)
= sin180 cos C - cos180 sin C
= 0 - (-1)(sin C)
= sin C
(b) tan C = (tan A + tan B)/(tan A + tan B - 1)
tan C
= tan (180 - (A+B))
= (tan 180 - tan(A+B)) / (1 + tan(180)tan(A+B))
= - tan(A+B)
= - [tan A + tan B] / (1 - tan A tan B)
= [tan A + tan B] / [tan A tan B - 1] (你答案打错了,放C=90,A=45,B=45,tan45+tan45-1!=0,tan90 = infinity,impossible)
Q2: Prove that sin 2x/(1 + cos 2x) = tan x .Hence ,show that
sin 2x / (1 + cos 2x)
= 2 sin x cos x / (1 + (2cos^2 x - 1))
= 2 sin x cos x / 2 cos^2 x
= sin x / cos x
= tan x
(a) tan 15 = 2 - 3^1/2
tan 15
= sin (30) / (1 + cos 30)
= (1/2) / (1+\sqrt(3) / 2)
= (1/2) / (1+\sqrt(3) / 2) * (1 - \sqrt(3)/2) / (1 - \sqrt(3)/2)
= (1/2 - \sqrt(3)/4) / (1 - 3/4)
= 2 - \sqrt(3)
(b) tan 67.5 = 2^1/2 + 1
tan 67.5
= sin (135) / (1+cos (135))
= [\sqrt(2) / 2] / [1 - \sqrt(2) / 2]
= [\sqrt(2) / 2] / [1 - \sqrt(2) / 2] * [1 + \sqrt(2) / 2] / [1 + \sqrt(2) / 2]
= [\sqrt(2)/2 + 1/2] / [1-1/2]
= \sqrt(2) + 1
Q3: Using the substitution t = tan A/2 ,prove each of the following identities.
(a) (1 - cos A)/sin A = tan A/2
(1 - cos A)/sin A
= [1 - (1-t^2)(1+t^2)] / [(2t)/(1+t^2)]
= [(1+t^2) - (1-t^2)] / 2t
= 2t^2 / 2t
= t = tan A/2
(b) tan A/(1 + sec A) = tan A/2
tan A/(1+ sec A)
= [2t/(1-t^2)] / [1+(1+t^2)/(1-t^2)]
= 2t / [(1-t^2)+(1+t^2)]
= 2t / 2
= t = tan A/2
Q4: Using the substitution t = tan x ,prove each of the following identities.
(a) (1 - cos 2x)/(1 + cos 2x) = tan^2 x
(1 - cos 2x) / (1 + cos 2x)
= [1 - (1-t^2)/(1+t^2)] / [1+ (1-t^2)/(1+t^2)]
= [(1+t^2) - (1-t^2)] / [(1+t^2) - (1-t^2)]
= 2t^2 / 2
= t^2 = tan^2 x
(b) csc 2x + cot 2x = cot x
csc 2x + cot 2x
= (1+t^2)/2t + (1-t^2)/2t
= 2/2t
= 1/t
= 1/tan x
= cot x
第三第四题是half angle substitution,如果还没学过应该看不懂,主要就是
当 t = tan x
sin 2x = 2t/(1+t^2)
cos 2x = (1-t^2)/(1+t^2)
其他的tan 2x, sec 2x, csc 2x, cot 2x 都可以用以前学过的identity derive 出来。
|
|
|
|
|
|
|
|
|
|
|
发表于 21-4-2015 12:11 AM
|
显示全部楼层
|
我是旧制度最后一批考生,STPM毕业2年多了... |
|
|
|
|
|
|
|
|
|
|

楼主 |
发表于 23-4-2015 11:53 PM
|
显示全部楼层
你知道sum and differences of sines and of cosines是什麼東西嗎?
我給你個要點,幫你回想起來
方程式:
1)sinP + sinQ = 2sin(P+Q)/2 cos(P-Q)/2
2)cosP + cosQ = 2cos(P+Q)/2 cos(P-Q)/2
我想知道其中的概念是什麼,它是計算什麼,也就是說它存在意義是什麼..?
書上缺乏的教義,並不足以讓我參透深層的意義,只教了計算的方法,都不懂它是什麼東西,讓我感到相當納悶!
另外,讓我不解的是,為什麼inverse function 只可以是 one to one ,我覺得many to one應該也可以才是。
比如說 (-2)^2 或者 (2)^2 都等於 4 ,然後 (4)^1/2 都可以等於 -2 或 2 才是。
希望你能點醒我的迷思.gif)
|
|
|
|
|
|
|
|
|
|
|
发表于 24-4-2015 02:49 AM
|
显示全部楼层
1)sinP + sinQ = 2sin(P+Q)/2 cos(P-Q)/2
2)cosP + cosQ = 2cos(P+Q)/2 cos(P-Q)/2
这个方程式我个人是叫做product to sum 和 sum to product identity.
最主要的功能就是把trigo function 从 sum和product之间交换。
更完整的应该是:

至于用处么,我个人最常用这个identity的地方是在做integration的时候。(你sem2会读trigo的integration,但是这个formula会不会强调就不知道了)
假如你要integrate cos (5x) sin (3x) dx
用一般的方法来做固然可以做到,可以还是要花一些时间(substitution或integration by parts)
可以如果你用这个product to sum identity:
cos 5x sin 3x = 1/2 (sin 8x - sin 2x)
这个expression是可以直接integrate的,剩下的步骤就很简单了。
如果善用这个identity,这种题目3行就写完了,你朋友如果用其他trigo identity来expand或integration by part,将会十分耗时。
\int cos 5x sin 3x dx
= cos 5x \int sin 3x dx - \int (d/dx (cos 5x) \int sin 3x dx )dx
= cos 5x (-cos3x/3) - \int (-5sin5x * (-cos3x/3) )dx
= - cos 5x cos 3x /3 - \int (5sin5x cos 3x/3) dx
= - cos 5x cos 3x /3 - 5/3 * [sin 5x \int cos 3x dx - \int(d/dx(sin5x) * \int (cos 3x) dx)dx]
= - cos 5x cos 3x /3 - 5/3 * [sin 5x sin 3x / 3 - \int (5 cos 5x sin 3x /3)dx]
= - cos 5x cos 3x /3 - 5/9 * sin 5x sin 3x + 25/9 \int cos 5x sin 3x dx
16/9 \int cos 5x sin 3x dx
= cos 5x cos 3x /3 + 5/9 * sin 5x sin 3x
\int cos 5x sin 3x dx
= 3/16 * (cos 5x cos 3x) + 5/16 sin 5x sin 3x //这里就已经是答案了,不过还可以simplify
= 3/16 * 0.5(cos 8x + cos 2x) + 5/16 * 0.5(cos 2x - cos 8x)
= - (cos 8x)/16 + (cos 2x)/4
如果善用product to sum identity,这个题目将会非常简单。
\int cos 5x sin 3x dx
= \int 1/2 (sin 8x - sin 2x) dx
= - (cos 8x)/16 + (cos 2x)/4
这样应该就可以很明显看出,能够善用product to sum formula的话,就可以把product of trigo function 弄成 sum of trigo function,而sum of trigo function 会比 product容易integrate 很多,而且步骤少这么多,粗心的机会也会低很多。
除此之外,这个formula很多时候是用来prove其他identity的。
如:

[cos 3x - cos x] / [cos x + cos 3x]
= [-2 sin 2x sin x] / [2 cos 2x cos x]
= - [sin 2x / cos 2x] [sin x / cos x]
= - tan 2x tan x
用法就和其他什么double angle, half angle, sum of square差不多
关于inverse function,只可以用在one to one 或 one to many 的function。
function 的 定义是domain和range之间的mapping,而inverse function是要从range map 去 domain。
如果说这个function 是 many to one (如f(x)=x^2,1= (-1)^2 = 1^2),当你要inverse function时,你并不能决定你要回去domain哪一个value,因为你不知道是哪一个value是你的range的前身。Inverse function的目的就是找回你range里的value是从domain的哪里map 来的。
如果是one to many,那么inverse function还是存在的,因为从range里拿出任何一个value,我们都可以清楚知道可以回去domain哪一个value。
换个例子
给你 f(x) = x^2
请问 f'(x) = - \sqrt (x) 还是 \sqrt(x)呢?这就是问题的地方,因为sqrt的定义是positive的,而在高阶的数学非常重视这一点,只是在中学时代没有理而已。
画graph时,y=\sqrt (x)只是画positive的部分而已,negative的部分是没有画的。
|
|
|
|
|
|
|
|
|
|
|

楼主 |
发表于 24-4-2015 09:47 PM
|
显示全部楼层
如果知道square root只能是positive的話,一切都符合邏輯了。其實高中課本的sqrt是有negative的,但你說了高中課本沒什麼理,那也說的通了。
但是你說one to many是可以的,也就是說兩個range共用一個domain,可是有什麼one to many的例子是一個domain,兩個ranges的..?你能夠舉例一下嗎
另外,有幾題數學題想讓你解
Q1: Solve the equation 4sin(x - 180)cos(x - 180) = \sqrt 3 for 0 < x <360 (ans: 30,60,210,240)
Q2: Solve the equation sin x = cos(x - 180/6) for -180 < x < 180 (ans: 30,-150)
Q3: Solve each of the following equations for 0 < x < 180 . Give your answers correct to the nearest 0.1
(a) cos 4x - cos 2x = 0 (ans: 0,60,120,180)
(b) sin 5x - sin x = 0 (ans: 0,30,90,150,180)
好奇的問問,你該不會是在STPM考獲4.0的佳績吧?! 
|
|
|
|
|
|
|
|
|
|
|
发表于 24-4-2015 11:58 PM
|
显示全部楼层
y^2 = x 就是一个one to many 的例子。它的graph是一个c shape.一个x value可以去2个y value.可是每个y value都只会map到一个x value.
Q1: Solve the equation 4sin(x - 180)cos(x - 180) = \sqrt 3 for 0 < x <360 (ans: 30,60,210,240)
4 sin(x-180) cos(x-180)
= 2 sin (2x-360)
= 2 sin 2x = \sqrt 3
sin 2x = (\sqrt 3) / 2
2x = 60, 120, 420, 480
x = 30, 60, 210, 240
Q2: Solve the equation sin x = cos(x - 180/6) for -180 < x < 180 (ans: 30,-150) 题目严重打错...下次打好来啊,把答案sub进去都知道不对,我知道你打180/6是\pi/6,下次还是直接打\pi吧,没有题目会打180/6的,就算是用degree也会打30就好。
sin x = cos (-x-30)
cos (-x-30)
= cos (x+30)
= sin (60-x)
60-x = x + 360n
2x = 60 + 360n
when n=0
x = 30
when n =1
x = 210 (out of bound)
when n = -1
x = -150
x = 30,-150
Q3: Solve each of the following equations for 0 < x < 180 . Give your answers correct to the nearest 0.1
(a) cos 4x - cos 2x = 0 (ans: 0,60,120,180)
cos 4x - cos 2x
= 2 cos^2 2x - cos 2x - 1 = 0
(2 cos 2x + 1)(cos 2x -1) =0
cos 2x = -1/2
2x = 120,240
x = 60, 120
cos 2x = 1
2x = 0, 360
x = 0, 180 (这里你去看你的domain是 0<x<180还是0<=x<=180,如果没有=,不能接受0和180作为答案)
x= 0,60,120,180
(b) sin 5x - sin x = 0 (ans: 0,30,90,150,180)
sin 5x - sin x
= 2 cos3xsin2x = 0
cos 3x =0
3x = 90, 270, 450
x = 30, 90, 150
sin2x=0
2x = 0, 180, 360
x = 0, 90, 180
x = 0, 30, 90, 150, 180
STPM是考4.0没错,不过我是旧制度最后一批。
|
|
|
|
|
|
|
|
|
|
|

楼主 |
发表于 26-4-2015 01:15 AM
|
显示全部楼层
|
|
|
|
|
|
|
|
|
|
发表于 26-4-2015 03:42 AM
|
显示全部楼层
要看one to many 还是 many to one,最直接的方法就是画graph出来。然后,看每一个x-value,如果有任何一个会map去两个或以上的y value,那就是 one to many。如果有哪一个y-value是来自于2个或以上的x-value,那就是many to one。如果两个都有,那就是many to many。(如x^2+y^2=1)
y^2=x,其实可以写成 y = +-\sqrt(x),graph是一个C-shape,一个x-value会map去两个y-value,所以是one to many。
电脑上的symbol,很多都是用\来开始的,如\sqrt,\int,\theta,\alpha,\beta,\gamma等等。你去microsoft word,按 alt + = 就会进入equation mode,然后打这些short code进去,再按一下 spacebar,就会变成symbol了。这个在用电脑打equation时很有用,不用特地去找那个symbol然后按出来。
你那个trigo identity 叫harmonic form。
a sin x + b cos x = c sin (x + d)
c sin (x+d)
= c [sin x cos d + cos x sin d]
= c cos d sin x + c sin d cos x
a = c cos d
b = c sin d
a^2 + b^2 = c^2 (sin^2 d + cos^2 d)
c = \sqrt (a^2 + b^2) (可以positive或negative,下面解释)
b/a = sin d / cos d = tan d
d = tan^-1 (b/a)
你的两个方程式都是按照这个方程式变来的
首先,c到底是positive还是negative就得看a 和 b是positive还是negative。
如果a 和 b都是 positive,那么 tan^-1 b/a 是 positive,d 在 first quadrant。
那么 cos d 和 sin d 都是 positive,所以c 就拿positive value。
如果 a 和 b 都是 negative,那么 tan^-1 b/a 是 positive,d 在 first quadrant。
cos d 和 sin d 都是 positive,c必须拿negative value才可以符合
a = c cos d
b = c sin d
如果 a 是 positive,b 是 negative,tan^-1 b/a 是 negative,d 在 fourth quadrant。
那么 cos d 是 positive,sin d 是 negative。
为了符合
a = c cos d
b = c sin d
c 就需要拿 positive。
如果 a 是 negative,b 是 positive,tan^-1 b/a 是 negative, d在 fourth quadrant。
cos d postive,sin d negative,c 需要拿 negative。
从这4个case可以看出,c 的 sign 是完全根据 a 的 sign。
如果 a 是 negative,c 就是 negative。
为了不要让前面的constant是negative,所以我们可以在a是negative的时候做一些manipulation:
-C sin (x + d) //c = -C
= -C cos (x + d - 90)
= C cos (180 - (x+d-90))
= C cos (-x + 270 -d)
= C cos (x + d - 270)
= C cos (x + (d +90)) //-360不会有影响
然而这是在a是negative,b是positive才做的事。因为当两个都是negative时,d 是 positive,d+90>90,但是 d 是在-90和90之间,所以不能用这个form。
当a 和 b都是negative,
a sin x + b cos x = - (A sin x + B cos x),然后一切按照positive的做法,
最后会拿到
- C sin (x+d),要不要变就随便了。
总结一下,
a sin x + b cos x = c sin (x+d)
d = tan^-1 (b/a)
if a>0
c = \sqrt (a^2+b^2)
if a<0
c = - \sqrt (a^2+b^2)
其实做成这样就可以了,剩下的只是一些基本的sin和cos之间的转换。
你问我为什么formula过了那么多年都还记得,原因有几个:
1)我现在读大学工程系还是会用到的。尤其是calculus,读到你怕。Trigo的calculus会读很多,所以trigo的formula都还是会用到。
2)第二个原因就是我根本没有去背整个formula。我都是从最basic的form开始derive的,就像上面的那些formula,我只需要大概记得derive的步骤就好。
3)就很自然的记得了,就像1+1=2,area of circle = \pi r^2,volume of sphere = 4/3 \pi r^3,gradient of straight line = - y-intercept/x-intercept,反正我是对数学有兴趣,所以大多都记得。
|
|
|
|
|
|
|
|
|
|
|

楼主 |
发表于 27-4-2015 12:20 AM
|
显示全部楼层
|
|
|
|
|
|
|
|
|
|
发表于 27-4-2015 06:45 AM
|
显示全部楼层
Q1: Functions f , g and h are defined by f(x)= x/(x+1) , g(x)= (x+2)/x , h(x)= 3 + 2/x .
(a) State the domains of f and g.D(f) = All real numbers except -1
D(g) = All real numbers except 0
(b) Find the composite function g·f and state its domain and range.
g.f
= g(x/(x+1))
= [x/(x+1)+2]/[x/(x+1)]
= [x+2(x+1)]/x
= [3x+2]/x
= 3+2/x
D(g.f) = All real numbers except -1 and when f(x) = 0
f(x) = 0 when x =0
D(g.f) = All real numbers except 0 and -1
R(2/x) = All real numbers except 0
R(g.f) = All real numbers except 1 (-1 is not within domain, 3 + 2/x = 1 is not in the range)
(c) State its domain and range of h.
D(h) = All real numbers except 0
R(h) = All real numbers
(d) State whether h = g·f . Give a reason for your answer.
D(h) =/= D(g.f)
h =/= g.f
Q2: The function f is defined by f(x)= 2 + \sqrt(x-1) , x >= 1 .
(a) Find \inverse f . Determine its domain and range.
D(f) : x>=1
R(f) : f(x)>=2
y = 2 + \sqrt(x-1)
x-1 = (y-2)^2
x = 1 + (y-2)^2
= y^2 - 4y + 5
f^-1 (x) = x^2 - 4x + 5
D(f^-1) = R(f) : x>=2
f is one to one.
R(f^-1) = D(f) : x>=1
(b) On the same coordinate axes , sketch the graphs of y=f(x) and y=\inverse f(x) .State a relationship between the graphs of y=f(x) and y=\inverse f(x) .Hence ,determine the point of intersection of the graphs of y=f(x) and y=\inverse f(x).
额,懒得开graph software,f的graph就是从(1,2)开始,然后画square root 的 curve。(形状参考y=x^1/2 的graph)
f^-1 的 graph 就是 f的形状,可是以y=x的线reflect。从(2,1)开始,画y=x^2的curve(向右而已)
y = x
y^2 - 4y + 5 = y
y^2 - 5y + 5 =0
y = [5+-\sqrt(25-20)]/2
= 3.62, 1.38(<2, neglect)
intersect at (3.62,3.62)
Q3: The function f is defined by f(x)= x^2 - 3x , x is real number.
(a) Sketch the graph of y=f(x) .Explain why \inverse f does not exist.
这个graph应该不用我教你画吧,form4 add math 有学。
f is many to one, f(0) = f(3) = 0
Inverse function does not exist.
(b) State the domain of f so that \inverse f exists.Find \inverse f and state its corresponding domain.
D(f) : x>=1.5 (只拿右边的一半,就变成one to one了)
At x = 1.5, f(x) = -2.25
y = x^2 - 3x
x^2 - 3x - y =0
x = [3+\sqrt(9+4y)]/2
= [3+\sqrt(9+4y)]/2 (只拿positive,因为我们拿右边的一半)
f^-1 (x) = [3+\sqrt(9+4x)]/2
D(f^-1) = R(f) : x>= -2.25
|
|
|
|
|
|
|
|
|
| |
本周最热论坛帖子
|