佳礼资讯网

 找回密码
 注册

ADVERTISEMENT

搜索
12
返回列表 发新帖
楼主: jypang

math t 30/3/2012题目更新

  [复制链接]
发表于 4-2-2012 09:52 PM | 显示全部楼层
integral sin^4(2 x) dx
For the integrand sin^4(2 x), substitute u = 2 x and  du = 2 dx:
= 1/2 integral sin^4(u) du
Use the reduction formula,  integral sin^m(u) du = -(cos(u) sin^(m-1)(u))/m + (m-1)/m integral sin^(-2+m)(u) du, where m = 4:
= 3/8 integral sin^2(u) du-1/8 sin^3(u) cos(u)
Write sin^2(u) as 1/2-1/2 cos(2 u):
= 3/8 integral (1/2-1/2 cos(2 u)) du-1/8 sin^3(u) cos(u)
Integrate the sum term by term and factor out constants:
= -1/8 sin^3(u) cos(u)+3/8 integral 1/2 du-3/16 integral cos(2 u) du
For the integrand cos(2 u), substitute s = 2 u and  ds = 2 du:
= -3/32 integral cos(s) ds-1/8 sin^3(u) cos(u)+3/8 integral 1/2 du
The integral of 1/2 is u/2:
= -3/32 integral cos(s) ds+(3 u)/16-1/8 sin^3(u) cos(u)
The integral of cos(s) is sin(s):
= -(3 sin(s))/32+(3 u)/16-1/8 sin^3(u) cos(u)+constant
Substitute back for s = 2 u:
= (3 u)/16-3/32 sin(2 u)-1/8 sin^3(u) cos(u)+constant
Substitute back for u = 2 x:
= (3 x)/8-3/32 sin(4 x)-1/8 sin^3(2 x) cos(2 x)+constant
Which is equal to:
= 1/64 (24 x-8 sin(4 x)+sin(8 x))+constant
回复

使用道具 举报


ADVERTISEMENT

发表于 4-2-2012 11:45 PM | 显示全部楼层
本帖最后由 whyyie 于 4-2-2012 11:49 PM 编辑

回复 20# jypang

sin^2 2x = 1 - cos^2 2x
(sin^2 2x)^2 = (1-cos^2 2x)(sin^2 2x) = sin^2 2x  - sin^2 2x cos^2 2x = sin^2 2x - (sin 2x cos 2x)^2

To change  sin^2 2x
From cos 2x = 1 - 2 sin^2 x
2 sin^2 x = 1 - cos 2x
2 sin^2 2x = 1 - cos 4x
sin^2 2x = (1/2)(1-cos 4x)

To change (sin 2x cos 2x)^2
From sin 2x = 2 sin x cos x
sin 4x = 2 sin 2x cos 2x
(1/2) sin 4x = sin 2x cos 2x
(sin 2x cos 2x)^2 = (1/4) sin^2 4x

From 2 sin^2 x = 1 - cos 2x
sin^2 4x  = (1/2)(1-cos 8x)
(1/4)(sin^2 4x) = (1/8) ( 1- cos 8x)

Integration of (sin^2 2x)^2
= Integration of  sin^2 2x -  Integration of (sin 2x cos 2x)^2
= Integration of
(1/2)(1-cos 4x) - Integration of (1/8) ( 1- cos 8x)
= (1/64) (24x-8 sin 4x +sin 8x)+c
回复

使用道具 举报

 楼主| 发表于 5-2-2012 01:41 AM | 显示全部楼层
integral sin^4(2 x) dx
For the integrand sin^4(2 x), substitute u = 2 x and  du = 2 dx:
= 1/2 int ...
puangenlun 发表于 4-2-2012 09:52 PM

回复  jypang

sin^2 2x = 1 - cos^2 2x
(sin^2 2x)^2 = (1-cos^2 2x)(sin^2 2x) = sin^2 2x  - sin^2  ...
whyyie 发表于 4-2-2012 11:45 PM


thanks a lot !!!!
回复

使用道具 举报

 楼主| 发表于 30-3-2012 11:23 AM | 显示全部楼层
回复

使用道具 举报

发表于 1-4-2012 03:41 PM | 显示全部楼层
jypang 发表于 30-3-2012 11:23 AM



    先找alpha 和Q的关系,得到

tan (alpha)=(AO/MO)tan Q           ,         (O 是square base 的中心, M 是 midpoint of line AB)

再prove AO:MO的比列是 (2)^(1/2) : 1

提示:pythagoras theorem

(a)同样的, 找beta和alpha的关系,得到

tan (beta)=(MO/AM) sec (alpha)

再prove MO:AM的比列是1 : 1

提示:AB=BC=CD=AD

(b)题目不完整
回复

使用道具 举报

 楼主| 发表于 1-4-2012 07:38 PM | 显示全部楼层
先找alpha 和Q的关系,得到

tan (alpha)=(AO/MO)tan Q           ,         (O 是square base ...
Allmaths 发表于 1-4-2012 03:41 PM



    题目里面的问题和a)我都做了,b)不会做,题目没错啊
回复

使用道具 举报

Follow Us
发表于 1-4-2012 08:20 PM | 显示全部楼层
题目里面的问题和a)我都做了,b)不会做,题目没错啊
jypang 发表于 1-4-2012 07:38 PM



    cos (gamma)= - cos2(alpha)?

还是,

cos (gamma)= - cos (2/?)(alpha)?

看回你的照片,好像有typo
回复

使用道具 举报

 楼主| 发表于 1-4-2012 10:24 PM | 显示全部楼层
cos (gamma)= - cos2(alpha)?

还是,

cos (gamma)= - cos (2/?)(alpha)?

看回你的照片, ...
Allmaths 发表于 1-4-2012 08:20 PM



    cos (gamma)= - cos ^2(alpha)
那个格子不小心弄到的
回复

使用道具 举报


ADVERTISEMENT

您需要登录后才可以回帖 登录 | 注册

本版积分规则

 

所属分类: 欢乐校园


ADVERTISEMENT



ADVERTISEMENT



ADVERTISEMENT

ADVERTISEMENT


版权所有 © 1996-2026 Cari Internet Sdn Bhd (483575-W)|IPSERVERONE 提供云主机|广告刊登|关于我们|私隐权|免控|投诉|联络|脸书|佳礼资讯网

GMT+8, 16-2-2026 02:22 PM , Processed in 0.077818 second(s), 19 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表