|

楼主 |
发表于 17-5-2004 06:04 PM
|
显示全部楼层
|
|
|
|
|
|
|

楼主 |
发表于 17-5-2004 06:23 PM
|
显示全部楼层
|
|
|
|
|
|
|

楼主 |
发表于 18-5-2004 02:35 PM
|
显示全部楼层
设 x, y 为任意实数。
证明:|(sin x)^2 - (sin y)^2|<= |x^2 - y^2|
这个问题,也可用三角学里的恒等式。(与之前的做法不相上下)
设 x, y 为任意实数。
证明:|(sin x)^2 - (sin y)^2|<= |x - y| 因为
|(sin x)^2 - (sin y)^2|
=|(sin x + sin y) (sin x - sin y)|
=|{ 2 (sin((x+y)/2) cos((x-y)/2)} { 2 (cos((x+y)/2))sin((x-y)/2) }|
=| sin(x+y)sin(x-y)|
<= |sin(x-y)| (因为 |sin(A)|<= 1 for all A in R)
<= |x-y| (因为 |sin(A)|<= |A| for all A in R)
因为
|(sin x)^2 - (sin y)^2|
=|(sin x + sin y) (sin x - sin y)|
=|{ 2 (sin((x+y)/2) cos((x-y)/2)} { 2 (cos((x+y)/2))sin((x-y)/2) }|
=| sin(x+y)sin(x-y)|
<= |(x+y)(x-y)| (因为 |sin(A)|<= |A| for all A in R)
<=|x^2 - y^2|
[ Last edited by pipi on 18-5-2004 at 02:40 PM ] |
|
|
|
|
|
|
|

楼主 |
发表于 24-5-2004 12:49 PM
|
显示全部楼层
设 x, y 为任意实数。
证明:|(sin x)^2 - (sin y)^2|<= |x - y|
设f(x) = (sin x)^2
所以 f '(x) = 2 sin(x) cos(x) = sin(2x)
若 x = y, 显然 0 = |(sin x)^2 - (sin y)^2|<= |x - y| = 0
若 x ≠ y,
用 Mean Value Theorem,
(f(x) - f(y))/(x - y) = sin(2c), c 在 x 和 y 之间.
因为 |sin(2c)| <= 1,
我们有 |(f(x) - f(y))/(x - y)| <= 1
所以 |f(x) - f(y)| <= |x - y|
即 |(sin x)^2 - (sin y)^2|<= |x - y|
证毕。 |
|
|
|
|
|
|
|

楼主 |
发表于 24-5-2004 12:52 PM
|
显示全部楼层
再来一题不等式:
若 x, y, z > 0
求证:
(y/(y+x))^2 + (z/(z+y))^2 + (x/(x+z))^2 >= 3/4 |
|
|
|
|
|
|
|

楼主 |
发表于 26-5-2004 06:16 PM
|
显示全部楼层
pipi 于 24-5-2004 12:52 PM 说 :
若 x, y, z > 0
求证:
(y/(y+x))^2 + (z/(z+y))^2 + (x/(x+z))^2 >= 3/4
给个提示: (当然不一定用这个方法做)
可设
a = x/y, b = y/z, c = z/x |
|
|
|
|
|
|
|
发表于 28-5-2004 10:58 AM
|
显示全部楼层
|
|
|
|
|
|
|

楼主 |
发表于 28-5-2004 12:43 PM
|
显示全部楼层
铁蛋,别灰心,你可以的。。。
其他在看贴子的网友,也来玩玩吧。。。 |
|
|
|
|
|
|
|
发表于 28-5-2004 05:15 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 28-5-2004 09:22 PM
|
显示全部楼层
Quadratic Mean 和 Harmonic Mean
我也暂时解不到这不等式。
不过有了一些头绪,也就是用 Quadratic Mean 和 Harmonic Mean
但是之中会有一些问题。 |
|
|
|
|
|
|
|
发表于 29-5-2004 02:34 AM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 29-5-2004 04:33 PM
|
显示全部楼层
Sorry guys,
my computer is experiencing problem.
I can't key-in Chinese.(I can't even read my sms.)
I think I have solved the problem.( quiet tedious)
My hint is
let u = y+x,
v = z+y,
and w = x+z.
IronEgg, I can't read your sms. |
|
|
|
|
|
|
|
发表于 30-5-2004 03:33 PM
|
显示全部楼层
惭愧,我也没有满意的作法..
证明(y/(y+x))^2 + (z/(z+y))^2 + (x/(x+z))^2 >=3/4
a = x/y, b = y/z, c = z/x, c=1/(ab)
[a^(1/2) -1]^2>=0
a+1 >= 2a^(1/2)
1/(1+a)^2<=1/(4a)
1/(1+a)^2+1/(1+b)^2+1/(1+c)^2<=1/4 (1/a+1/b+1/c)
1/(1+a)^2+1/(1+b)^2+1/[1+1/(ab)]^2<=1/4 (1/a+1/b+ab)
但这是<=, 而不是题目的>=.
能找到min[1/4(1/a+1/b+ab)]是当a=1,b=1,
min[1/(1+a)^2+1/(1+b)^2+1/[1+1/(ab)]^2]当a=1,b=1.
而当a=1,b=1,LHS 和RHS都是3/4..
但觉得这样不漂亮..到底那里出错了?
应该有更好的解法. |
|
|
|
|
|
|
|
发表于 31-5-2004 03:12 PM
|
显示全部楼层
代入a=x/y, b=y/z, c=z/x
變成
1/(1+a)^2+1/(1+b)^2+1/(1+c)^2
>=1/(1+ab)+1/(1+c)^2
=(c^2+c+1)/(1+c)^2
>=3/4
不知對否....大概大概....
[ Last edited by 情~風 on 1-6-2004 at 03:20 AM ] |
|
|
|
|
|
|
|

楼主 |
发表于 1-6-2004 02:19 PM
|
显示全部楼层
情~風 于 31-5-2004 03:12 PM 说 :
代入a=x/y, b=y/z, c=z/x
變成
1/(1+a)^2+1/(1+b)^2+1/(1+c)^2
>=1/(1+ab)+1/(1+c)^2
=(c^2+c+1)/(1+c)^2
>=3/4
[ Last edited by 情~風 on 1-6-2004 at 03:20 A ...
怎样证明
1/(1+a)^2+1/(1+b)^2 >=1/(1+ab) ?? |
|
|
|
|
|
|
|
发表于 1-6-2004 06:41 PM
|
显示全部楼层
pipi 于 1-6-2004 02:19 PM 说 :
怎样证明
1/(1+a)^2+1/(1+b)^2 >=1/(1+ab) ??
可假設a>=b>=c
若a>=b>=1
則(a-1)(b-1)>=0
1+ab>=a+b
1/(1+a)^2+1/(1+b)^2
>=2/(1+a)(1+b)
=2/(1+a+b+ab)
>=1/(1+ab)
否則有1>=b>=c
則類似地有
1/(1+b)^2+1/(1+c)^2
>=1/(1+bc)
代入原式即可 |
|
|
|
|
|
|
|

楼主 |
发表于 2-6-2004 09:56 AM
|
显示全部楼层
|
|
|
|
|
|
|

楼主 |
发表于 2-6-2004 10:31 AM
|
显示全部楼层
又来一题不等式:
若 x, y, z > 0
求证:
(x/(y+z)) + (y/(x+z)) + (z/(x+y)) >= 3/2 |
|
|
|
|
|
|
|

楼主 |
发表于 2-6-2004 02:21 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 11-6-2004 04:22 PM
|
显示全部楼层
pipi 于 2-6-2004 10:31 AM 说 :
若 x, y, z > 0
求证:
(x/(y+z)) + (y/(x+z)) + (z/(x+y)) >= 3/2
(x/(y+z)) + (y/(x+z)) + (z/(x+y))
= (x+y+z)/(y+z) - 1 + (x+y+z)/(x+z) - 1 + (x+y+z)/(x+y) -1
= (x+y+z) [1/(y+z) + 1/(x+z) + 1/(x+y)] - 3
设 (y+z)=a, (x+z)=b, (x+y)=c, 则 (x+y+z)=1/2 (a+b+c)
以上式子可写成 :
1/2 (a+b+c) (1/a+1/b+1/c) - 3
= 1/2 (1+a/b+a/c+b/a+1+b/c+c/a+c/b+1) - 3 [a/b+b/a>=2]
>= 1/2 (9) - 3
= 3/2 |
|
|
|
|
|
|
| |
本周最热论坛帖子
|