|
发表于 26-8-2006 01:25 PM
|
显示全部楼层
原帖由 zipp_882000 于 26-8-2006 09:46 AM 发表
9)更离谱我找不到答案,跟完全部指示了
Determine the polynomial P(x) which has the following properties
a)P(x) is of a degree 3
b)(x-1) is a factor of p(x)
c)P(0) =4 and p(-1)=10
d)P(x) has a remiander 16 when divided by (x-2)
Let P(x) = ax^3 + bx^2 + cx + d
P(1 ) = 0 ==> ? + ? + ? + ? =0 ---------------(1)
P(0 ) = 4 ==> ? + ? + ? + ? =4 ---------------(2)
P(-1) = 10 ==> ? + ? + ? + ? =10 ---------------(3)
P(2 ) = 16 ==> ? + ? + ? + ? =16 ---------------(4)
Then, solve the equations......
a=? , b=? , c=? , d=?
Therefore, you already find the P(x) = .................. |
|
|
|
|
|
|
|
发表于 26-8-2006 10:12 PM
|
显示全部楼层
哈哈明白了,谢谢。看来还需要再接再厉。谢谢!!!! |
|
|
|
|
|
|
|

楼主 |
发表于 28-8-2006 05:02 PM
|
显示全部楼层
1) in each of the following expansions,find the terms as stated.
a) (2a+b)^12 ,5th terms
b) (x- 1/x)^6, constant terms
2) the coefficient if x^3 is four times the coefficient of x^2 in the expansion of (1+x)^n. find the value of n.
3) find the coefficient of the terms in x as indicated, in the following expansions.
a) ( 1+x^2)(2-3x)^7 ,terms in x^3
b) x(x- x/x^2) ^12 ,terms in x^4 |
|
|
|
|
|
|
|
发表于 28-8-2006 06:21 PM
|
显示全部楼层
1) in each of the following expansions,find the terms as stated.
a) (2a+b)^12 ,5th terms
b) (x- 1/x)^6, constant terms
a) Binomial expansion : 5th term : 12C4 x (2a)^8 (b)^4
b)(x-1/x)^6 : constant term : 6C3 (x)^3 (-1/x)^3
2) the coefficient if x^3 is four times the coefficient of x^2 in the expansion of (1+x)^n. find the value of n.
coefficient of x^3 : nC2
coefficient of x^2 : nC1
nC2 = 4nC1 ==> n(n-1)/2 = 4n => n(n-9) = 0 ==> n = 9 (n=/=0)
3) find the coefficient of the terms in x as indicated, in the following expansions.
a) ( 1+x^2)(2-3x)^7 ,terms in x^3
b) x(x- x/x^2) ^12 ,terms in x^4
a)
coefficient of x^3 可以是 1 (Ax^3) 或 x^2(Bx)
所以 (2-3x)^7 的 x^3 的 cofficient = 7C3 x (-3x)^3 (2^4)=-15120x^3
x 的 coefficient = 7C1 (-3x)^1 (2)^6 = -1344
加起来 = -1344 + (-15120)= 16464
b) x(x- x/x^2) ^12 ,terms in x^4 <-----很奇怪,你是要表示 x(x-1/x)^12 ? |
|
|
|
|
|
|
|

楼主 |
发表于 28-8-2006 07:17 PM
|
显示全部楼层
不好意思。。type錯了
1) in each of the following expansions,find the terms as stated.
a) (2a+b)^12 ,10th terms
這題很奇怪。。明明跟著formula走的。。卻得不到答案
b) (x- 1/x)^6, constant terms
可以順便解釋下嗎?
3) find the coefficient of the terms in x as indicated, in the following expansions.
b) x(x- 2/x^2) ^12 ,terms in x^4
[ 本帖最后由 邵逸夫 于 28-8-2006 07:21 PM 编辑 ] |
|
|
|
|
|
|
|
发表于 28-8-2006 07:23 PM
|
显示全部楼层
1) in each of the following expansions,find the terms as stated.
a) (2a+b)^12 ,10th terms
這題很奇怪。。明明跟著formula走的。。卻得不到答案
你要 10th term , 所以是当 12C9 (2a)^9 (b)^3
3) find the coefficient of the terms in x as indicated, in the following expansions.
b) x(x- 2/x^2) ^12 ,terms in x^4
要找x^4 的 term 就必须找 (x-2/x^2)^12 里,x^3 的 term .
所以 x^3 term : 12C3 x^9 (2/-x^2)^3 = ...
b) (x- 1/x)^6, constant terms
可以順便解釋下嗎?
constant term 就是说那个 term 里没有 x .所以说, x 的 power 和 1/x 的 power 要一样,那么才会互相 cancel 对方。否则你就 testing 用 binomial expansion 开出来看。
[ 本帖最后由 dunwan2tellu 于 28-8-2006 07:27 PM 编辑 ] |
|
|
|
|
|
|
|
发表于 29-8-2006 02:42 AM
|
显示全部楼层
原帖由 zipp_882000 于 26-8-2006 10:12 PM 发表
哈哈明白了,谢谢。看来还需要再接再厉。谢谢!!!!
不用客气。。。。。。。哈哈。。。。 |
|
|
|
|
|
|
|
发表于 4-9-2006 10:53 PM
|
显示全部楼层

[ 本帖最后由 shijim 于 5-9-2006 04:35 PM 编辑 ] |
|
|
|
|
|
|
|
发表于 5-9-2006 02:49 PM
|
显示全部楼层
直接用 long division 来找他的 remainder |
|
|
|
|
|
|
|
发表于 5-9-2006 04:34 PM
|
显示全部楼层
原帖由 dunwan2tellu 于 5-9-2006 02:49 PM 发表
直接用 long division 来找他的 remainder
我会了
那个power 9的不会   |
|
|
|
|
|
|
|
发表于 5-9-2006 04:49 PM
|
显示全部楼层
3600 = 2^4 x 3^2 x 5^2
(x+p)^2 是其中一个factor , 所以 p 可能是 3600 的 factor .
一个很有用的 theorem :
given any polynomial P(x) . If P(a) = 0 and P'(a) = 0 . Then (x-a)^2 is a root for P(x)
所以因为 (x+p)^2 是 f(x) 的factor, 那么 f(-p) = 0 .又因为它是 double root , 所以他也一定要是 f'(x) 的 factor , i.e f'(-p) = 0
但是 f'(x) = ...... + 3 , 表示 p 只可能是 + - 3 或 + - 1 .
那么你试试 f(-1),f(1),f(-3),f(3) 看谁 = 0 那么它就是你要找的。 |
|
|
|
|
|
|
|
发表于 5-9-2006 05:21 PM
|
显示全部楼层
可是题目说p > 0 那么只试1,3 就可以是吗? |
|
|
|
|
|
|
|
发表于 5-9-2006 05:33 PM
|
显示全部楼层
原帖由 ss_sky87 于 5-9-2006 05:21 PM 发表
可是题目说p > 0 那么只试1,3 就可以是吗?
当然你可以取巧。不过别忘了,p=1 时,x = -1 哦! |
|
|
|
|
|
|
|

楼主 |
发表于 6-9-2006 05:13 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 6-9-2006 05:31 PM
|
显示全部楼层
一定是有 pattern 的。你先找
(A+I)B 再找 (A+I)^2 B ...如果还看不出 pattern 就再找多几个 ... |
|
|
|
|
|
|
|

楼主 |
发表于 6-9-2006 05:42 PM
|
显示全部楼层
(A+I)B = -183 -179 275
-264 -182 -100
3 -92 85
(A+I)^21 B呢? |
|
|
|
|
|
|
|
发表于 6-9-2006 05:49 PM
|
显示全部楼层
这里又有几题的问题要请问!希望大家多多指教
1. Find the value of k if the polynomial f(x)= x^10 – 2x^8 – x^3 +2x + k is divisible by x+1
这个k我找到了,是2。 With this value of k, find the remainder when f(x) is divided by (x+1)^2
2.Polynomial-polynomial p(x) and q(x) are defined as p(x)=x^8-1 and q(x)=x^4+4x^3-3x^2-2x+5
Find the remainder when the polynomial 3p(x)+4q(x) is divided by x^2+1
这题我用long division来做。可是怎么也做不到!因为x^2+1中间没有x,不知道怎样除!
2. When a polynomial is divided by ax-b or bx-a where [a]=/ ([ ] 为modulus,可是这里不明白代表什么意思) the remainder are the same even though the respective quotients q1(x) and q2(x) are not necessarily the same. Show that ax-b is a factor of q2(x) and x-1 is a factor of q1(x) + q2(x).
3. Given f(x)= x^5-3x^4+2x^3-2x^2+3x+1
Show by long division or otherwise that the remainder when f(x) is divided by x^2+1 is 2x
这样的除数(x^2+1)我每次不会做!(好像第2题)因为除了后比如说乘x^2,可是就是没有x^3,乘了x就是没有x^2。各位可以教教在下吗?然后题目所谓的otherwise的方法,我是这样做
X^2+1=0
所以x= +- i (complex number)
代替 x = + i 就做到了,可是 – i 却做不到。这样的方法可以被接受吗?
4. Prove the if n is an integer greater than 1, then 26^n – 26 is an odd multiple of 50.
Hence or otherwise, show that the last two digits of 26^n where n>1 is always the same and independent of n. |
|
|
|
|
|
|
|
发表于 6-9-2006 06:23 PM
|
显示全部楼层
原帖由 shijim 于 6-9-2006 05:49 PM 发表
2.Polynomial-polynomial p(x) and q(x) are defined as p(x)=x^8-1 and q(x)=x^4+4x^3-3x^2-2x+5
Find the remainder when the polynomial 3p(x)+4q(x) is divided by x^2+1
这题我用long division来做。可是怎么也做不到!因为x^2+1中间没有x,不知道怎样除!
你可以参考这。。。第 32# 帖
http://chinese.cari.com.my/myfor ... xtra=&page=2### |
|
|
|
|
|
|
|
发表于 6-9-2006 06:27 PM
|
显示全部楼层
可是里面全部都是除以linear的  |
|
|
|
|
|
|
|
发表于 6-9-2006 07:52 PM
|
显示全部楼层
4. Prove the if n is an integer greater than 1, then 26^n – 26 is an odd multiple of 50.
Hence or otherwise, show that the last two digits of 26^n where n>1 is always the same and independent of n.
26^n - 26 = 26(26^(n-1) - 1) = 26(26-1)(26^(n-2) + 26^(n-3) + ... + 1)
= 13 x 50 x (26^(n-2) + 26^(n-3) + ... + 1)
So it is a mutiple of odd 50 since 13 is odd and (26^(n-2) + 26^(n-3) + ... + 1) is also odd .
From above we can write
26^n - 26 = 50(2k+1) for k=non negative integer
so 26^n = 100k+ 50 + 26 = 100k + 76
So last two digit of 26^n is 76 (因为要直到最后两个 digit 的话,我们就把那个号码除于 100 ,余数就是 last two digit) |
|
|
|
|
|
|
| |
本周最热论坛帖子
|