|
发表于 20-8-2006 06:39 PM
|
显示全部楼层
1 + 3 + 5 + ... + (2n+1)
AP : first term,a = 1 , common difference,d = 2 , number of term = n+1
Formula
Sum of AP : n/2 [ 2a + (n-1)d ] = ... |
|
|
|
|
|
|
|

楼主 |
发表于 22-8-2006 09:57 AM
|
显示全部楼层
可是。。。我就是做不到答案出來。。。
我把全部東西帶進formula了。。
還是得不到n^2 + 2n + 1 |
|
|
|
|
|
|
|
发表于 22-8-2006 12:39 PM
|
显示全部楼层
原帖由 邵逸夫 于 22-8-2006 09:57 AM 发表
可是。。。我就是做不到答案出來。。。
我把全部東西帶進formula了。。
還是得不到n^2 + 2n + 1
S_n = (n/2)[ 2a + (n-1)d ]
在这个case, n = n+1 , d = 2, a = 1
所以S_n = [(n+1)/2] [ 2(1) + (n +1-1)2]
= [(n+1)/2] [ 2 + 2n]
= (n + 1)(n + 1)
= n² + 2n + 1 |
|
|
|
|
|
|
|
发表于 22-8-2006 10:54 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 23-8-2006 07:23 PM
|
显示全部楼层
34)
为了方便,称 square root = %
原题是 %[(x-a)(x-b)] - %[(x-c)(c-d)] = %[(a-c)(b-d)]
square both side :
(x-a)(x-b) + (x-c)(x-d) -2%[(x-a)(x-b)(x-c)(x-d)] = (a-c)(b-d)
=> 2x^2 - (a+b+c+d)x+ab + cd -2%[(x-a)(x-b)(x-c)(x-d)] = ab+cd-bc-ad
=> 2x^2 - (a+b+c+d)x+ab + bc + ad -2%[(x-a)(x-b)(x-c)(x-d)] = 0
=> (x^2 -(b+c)x +bc) + (x^2-(a+d)x+ad) -2%[(x-a)(x-b)(x-c)(x-d)] = 0
=>(x-b)(x-c) + (x-a)(x-d) -2%[(x-a)(x-b)(x-c)(x-d)] = 0
=> { %[(x-b)(x-c)] - %[(x-a)(x-d)] }^2 = 0
=> (x-b)(x-c) = (x-a)(x-d)
=> x^2 - (b+c)x + bc = x^2 -(a+d)x + ad
=> (a+d-b-c)x = ad - bc
因为 a+d =/= b+c , 所以 a+d-b-c =/= 0 所以
x = (ad-bc)/(a+d-b-c) |
|
|
|
|
|
|
|
发表于 23-8-2006 07:34 PM
|
显示全部楼层
35)
为了方便,设 square root = %
原题:%[(a-x)] + %[(b-x)] = %[(c-x)]
square both side :
(a-x) + (b-x) + 2%[(a-x)(b-x)] = c-x
=> 2%[(a-x)(b-x)] = x + (c-a-b)
square both side :
4(a-x)(b-x) = x^2 + 2(c-a-b)x + (c-a-b)^2
=> 4(x^2-(a+b)x + ab) = x^2 + 2(c-a-b)x + (a^2+b^2+c^2-2ac-2bc+2ab)
=> 3x^2 -2(a+b+c)x = a^2 + b^2 + c^2 -2ac-2bc-2ab
这里你要注意一个东西,也就是 (a+b+c)^2 = a^2+b^2+c^2+2ac+2bc+2ab
所以 let a+b+c = s 的话得到
3x^2 - 2sx = s^2 -4ac-4bc-4ab
=> 4(ab+bc+ac) = s^2 + 2sx - 3x^2 = (s-x)(s+3x) = (a+b+c-x)(a+b+c+3x)
其他得太小,看不清楚。
[ 本帖最后由 dunwan2tellu 于 23-8-2006 07:36 PM 编辑 ] |
|
|
|
|
|
|
|
发表于 23-8-2006 11:12 PM
|
显示全部楼层
50)设 y-z = a,z-x=b,x-y=c 那么 a+b+c=0 (不难看出来)和
a^2+b^2+c^2=(a-b)^2+(b-c)^2+(c-a)^2 (题目给的)
=>a^2+b^2+c^2 = 2(a^2+b^2+c^2) - 2(ab+bc+ca)
=>a^2+b^2+c^2-2(ab+bc+ca)=0
=>(a-b)^2 + c^2 -2c(a+b) = 0
=> (a-b)^2 + c^2-2c(-c) = 0 ( 别忘了 a+b+c=0 所以 a+b=-c)
=> (a-b)^2 + 3c^2 = 0
所以只可能是 a-b=0 和 c=0 .
也就是说 a-b=x+y-2z = 0 和 x-y=0
所以 x=y , 2y-2z=0--> y=z ==> x=y=z |
|
|
|
|
|
|
|
发表于 23-8-2006 11:24 PM
|
显示全部楼层
43,51)太模糊了,either 你放大或type 出来吧。
53)从 1/a + 1/b + 1/c = 1/(a+b+c)
=> (ab+bc+ac)/(abc) = 1/(a+b+c)
=> (ab+bc+ac)(a+b+c) = abc
=>ab(a+b)+bc(b+c)+ac(a+c)+3abc=abc
=>ab(a+b)+bc(b+c)+ac(a+c)+2abc=0
=>(a+b)(a+c)(b+c)=0 (这个要证明的话你 kembang 出来比较吧)
所以 a+b=0 OR a+c=0 OR b+c=0
因为对称所以可以假设当 a+b=0 时,a=-b , n=odd
1/a^n + 1/b^n + 1/c^n = -1/b^n + 1/b^n + 1/c^n = 1/c^n = 1/(a^n+b^n+c^n)
因为 a^n = -b^n => a^n + b^n = 0 => a^n+b^n+c^n = c^n
也不难证明 c^n = (a+b+c)^n ,因为 a+b=0
所以 1/a^n +1/b^n +1/c^n = 1/(a^n+b^n+c^n) = 1/(a+b+c)^n
注意一点是,如果 n = even 那么上面都不成立。因为 n = even 的话 a = -b => a^n = b^n => a^n+b^n=/=0
[ 本帖最后由 dunwan2tellu 于 23-8-2006 11:25 PM 编辑 ] |
|
|
|
|
|
|
|
发表于 24-8-2006 11:32 AM
|
显示全部楼层
原帖由 dunwan2tellu 于 23-8-2006 23:24 发表
43,51)太模糊了,either 你放大或type 出来吧。
53)从 1/a + 1/b + 1/c = 1/(a+b+c)
=> (ab+bc+ac)/(abc) = 1/(a+b+c)
=> (ab+bc+ac)(a+b+c) = abc
=>ab(a+b)+bc(b+c)+ac(a+c)+3abc=abc
=> ...
非常谢谢你的解答
除了 43题
其他的我都会了
43题我想自己先想一想
不会再问你   |
|
|
|
|
|
|
|
发表于 24-8-2006 11:12 PM
|
显示全部楼层
polynomial 求助
given the indentity x^4+x^2+x+1=_(三个等于)(x^2+A)(X^2-1)+Bx+c ,find the values of A.B,C.By using suitable values for x ,find the remainder when 100010101 is devided by 9999.
A,B,C 找到了,
x^4+x^2+x+1=_(三个等于)(x^2+A)(x^2-1)+Bx+C
=(x^4-x^2+Ax^2-A+Bx=C)
=X^4+(-1-A)x^2+Bx+C-A
B=1 1=-1+A A=2 1=C-A 1=C-2 C=3
答案找到 但是
by using a suitable value for x find the remainder when 100010101 is devided by 9999
原本认为可以用这个 Bx+c =remainder i get
其实是不是100010101 devided by 99999 the remainder i get =Bx-C ?
我知道的事Bx-c=x-3
然后傻掉了哈哈 |
|
|
|
|
|
|
|
发表于 24-8-2006 11:19 PM
|
显示全部楼层
x^4 + x^2 + x + 1 = (x^2+2)(x^2-1)+x+3
Pick x = 100
100010101 = (10002)(9999) + 103
也就是说 100010101/9999 = 10002 + 103/9999
所以余数是 103 咯! |
|
|
|
|
|
|
|
发表于 25-8-2006 12:41 AM
|
显示全部楼层
你怎么知x=100?so far 我明白您用,P(x)=(x-a)Q(x)+R(x),
但是你是怎么知道x=100? |
|
|
|
|
|
|
|
发表于 25-8-2006 01:11 AM
|
显示全部楼层
因为当 x = 100 时,x^4+x^2+x+1=100010101 |
|
|
|
|
|
|
|
发表于 25-8-2006 09:13 AM
|
显示全部楼层
那么是不是要一个一个试?tembak ?????? |
|
|
|
|
|
|
|
发表于 25-8-2006 10:58 AM
|
显示全部楼层
原帖由 zipp_882000 于 25-8-2006 09:13 AM 发表
那么是不是要一个一个试?tembak ??????
应该不难看出来吧?我也只是tembak一次就中了 |
|
|
|
|
|
|
|
发表于 25-8-2006 03:52 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 25-8-2006 04:10 PM
|
显示全部楼层
其实是有迹可寻的。就算你没看到 x^4+x^2+x+1 = 100010101 ,你也可以看看
x^2+2 或 x^2-1 其中一个 = 9999
猜一下就知道是 x^2 - 1 = 9999 ==> x = 100 了 |
|
|
|
|
|
|
|
发表于 26-8-2006 09:46 AM
|
显示全部楼层
救命啊!!!!
find the polynomial in x of degree three that has a valus zero when x=-1
and x=2 a value 8 when x=0 and a remainder 16/3 when devided by 3x+2
a value of 8 when x=0 是什么意思,8是remainder 吗?
8)fine the polynomial in x of third degree that had values of 4,2,6,and 2 when 0.1,2,-2 respectively
不明白它要什么.因为degree of 3 为什么有4个号码4,2,6 and 2 when 0 .....
9)更离谱我找不到答案,跟完全部指示了
Determine the polynomial P(x) which has the following properties
a)P(x) is of a degree 3
b)(x-1) is a factor of p(x)
c)P(0) =4 and p(-1)=10
d)P(x) has a remiander 16 when divided by (x-2)
哈哈又傻掉了........... |
|
|
|
|
|
|
|
发表于 26-8-2006 01:03 PM
|
显示全部楼层
原帖由 zipp_882000 于 26-8-2006 09:46 AM 发表
救命啊!!!!
find the polynomial in x of degree three that has a valus zero when x=-1
and x=2 a value 8 when x=0 and a remainder 16/3 when devided by 3x+2
a value of 8 when x=0 是什么意思, ...
Let P(x) = ax^3 + bx^2 + cx + d
When x= -1 , P(-1) = 0 ==> - a + b - c + d =0 ---------------(1)
When x= 2 , P(2 ) = 0 ==> 8a + 4b + 2c + d =0 ---------------(2)
When x= 0 , P(0 ) = 8 ==> d =8 ---------------(3)
When x=-2/3 , P(-2/3 ) = 16/3 ==> (-8/27)a +(4/9) b + (2/3)c + d =0 ---------------(4)
Then, solve the equations......
a=? , b=? , c=? , d=8
Therefore, you already find the P(x) = .................. |
|
|
|
|
|
|
|
发表于 26-8-2006 01:18 PM
|
显示全部楼层
原帖由 zipp_882000 于 26-8-2006 09:46 AM 发表
8)fine the polynomial in x of third degree that had values of 4,2,6,and 2 when 0.1,2,-2 respectively
不明白它要什么.因为degree of 3 为什么有4个号码4,2,6 and 2 when 0 .....
其实 0.1,2,-2 是当x=0.1,2,-2,所以P(x)=4,2,6, 2 respectively.....
也就是用之前第一题的方法。。。
Let P(x) = ax^3 + bx^2 + cx + d
When x= 0 , P(0 ) = 4 ==> ? + ? + ? + ? =4 ---------------(1)
When x= 1 , P(1 ) = 2 ==> ? + ? + ? + ? =2 ---------------(2)
When x= 2 , P(2 ) = 6 ==> ? + ? + ? + ? =6 ---------------(3)
When x=-2 , P(-2) = 2 ==> ? + ? + ? + ? =2 ---------------(4)
Then, solve the equations......
a=? , b=? , c=? , d=?
Therefore, you already find the P(x) = .................. |
|
|
|
|
|
|
| |
本周最热论坛帖子
|