|
|
本帖最后由 kuboy1314 于 20-4-2015 10:54 PM 编辑
大家好!
最近在數學上遇到了瓶頸,希望高手可以幫忙解決問題。先此謝謝
Let Q = Question
Let A = Answer
Q1 : If 2^a = 5^b = 20^c ,express c in terms of a and b .(answer is c = ab/2b+a )
Q2 : If 3(4^h) = 4(2^k) and 9(8^h) = 20(4^k) , show that 2^h = 4/5 .
otherwise,
what's the concept of "x l x" or "y l y" and,
what's the meant about"Real number".
Do you know?
|
|
|
|
|
|
|
|
|
|
|
发表于 11-4-2015 08:44 AM
|
显示全部楼层
Q1 : If 2^a = 5^b = 20^c ,express c in terms of a and b .(answer is c = ab/2b+a )
using log base 2,
log 2^a = log 5^b
a log 2 = b log 5
a = b log 5
log 5 = a/b
log 20^c = log 5^b
c( log 2+ log 2 + log 5 ) = b log 5
c( 2 + a/b) = b (a/b)
c(2b+a)/b = a
c = ab/(2b+a)
Q2 : If 3(4^h) = 4(2^k) and 9(8^h) = 20(4^k) , show that 2^h = 4/5 .
3(2^2h) = 4(2^k) -- 1
(2^k) = (3(2^2h))/4 -- 2
9(2^3h) = 20(2^2k) --3
3/1
3(2^h) = 5(2^k)
= 5(3(2^2h))/4
2^h/2^2h = 5/4
2^-h = 5/4
2^h = 4/5
http://en.wikipedia.org/wiki/List_of_mathematical_symbols
http://en.wikipedia.org/wiki/Real_number
中文
|
评分
-
查看全部评分
|
|
|
|
|
|
|
|
|
|

楼主 |
发表于 11-4-2015 02:59 PM
|
显示全部楼层
本帖最后由 kuboy1314 于 11-4-2015 09:34 PM 编辑
解釋得非常清楚!給你個贊 
另外,我遇到了新的問題,希望你能再次幫我解決。
Q1: -2 + loga+b (a2-b2) . [Express each of the following as a single logarithm.]
A1: log (a-b)/(a+b) base (a+b)
Q2: If loga P = m and logb P = n ,show that Logab P =mn/m+n
Q3: If X^2 + Y^2 = 34xy ,show that lg(x+y)/6 = (lg x + lg y)/2 (Notice : 书上写34,我怀疑是36...你怎么看?)
Q4: Show that A^logc b = b^logc a
乱七八糟的...可能看不懂
|
|
|
|
|
|
|
|
|
|
|
发表于 11-4-2015 10:56 PM
|
显示全部楼层
本帖最后由 YetSin 于 11-4-2015 11:22 PM 编辑
1) -2 + log_(a+b) (a^2-b^2)
=-2 + log_(a+b) [(a-b)(a+b)]
=-2 + log_(a+b) (a-b) + log_(a+b) (a+b)
=-2 + log_(a+b) (a-b) + 1
=-1 + log_(a+b) (a-b)
=log_(a+b) [1/(a+b)] + log_(a+b) (a-b)
=log_(a+b) [(a-b)/(a+b)]
2) a^m=p
b^n=p
p^(1/m)=a
p^(1/n)=b
p^[(1/m)+(1/n)] = ab
p^[(m+n)/mn]=ab
p=(ab)^[(mn)/(m+n)]
log_ab p = mn/(m+n)
另一个方法:
log_p a = 1/m
log_p b = 1/n
log_p ab = 1/m+1/n = (m+n)/mn
log_ab p = mn/(m+n)
3) x^2+y^2=34xy
x^2+2xy+y^2=36xy
(x+y)^2=36xy
2 log(x+y) = log (36xy)
2 log(x+y) = log 36 + log x + log y
log (x+y) = log 6 + (log x + log y)/2
log (x+y)- log 6 = (log x + log y)/2
log [(x+y)/6] = (log x + log y)/2
4) a^(log_c (b))
= a^[(log_a b)/(log_a c)]
=b^[1/(log_a c)]
=b^[log_c a]
下次放多几个bracket吧,你的log (xy)/6 可以看成 (log xy)/6, 也可以看成 log (xy/6)
|
评分
-
查看全部评分
|
|
|
|
|
|
|
|
|
|
发表于 11-4-2015 11:15 PM
|
显示全部楼层
Q1: -2 + loga+b (a2-b2) . [Express each of the following as a single logarithm.]
A1: log (a-b)/(a+b) base (a+b)
all log base a+b
-2 + log (a2-b2) = -2 log (a+b) + log (a+b)(a -b)
= -2 log (a+b) + log (a+b) + log (a-b)
= log (a-b) - log (a+b)
= log (a-b)/(a+b)
Q2: If loga P = m and logb P = n ,show that Logab P =mn/m+n
loga P = m
logb P = n
loga P * logb P = mn
logab P/ log ab a * logab P/ logab b = mn
(logab P * logab P) / (logab a * logab b) = mn --- 1
loga P + logb P = m+n
logab P/ log ab a + logab P/ logab b = m+n
(logab P * logab b) / (logab a* logab b) + (logab P* logab a)/(logab a* logab b) = m+n
(logab P * (logab b + logab a) / (logab a* logab b) = m+n
(logab P * logab ab) / (logab a* logab b) = m+n
(logab P / (logab a* logab b) = m+n -- 2
1/2
logab P = mn / m+n
酱好像有一点犯规but懒惰想起他方法
Q3: If X^2 + Y^2 = 34xy ,show that lg(x+y)/6 = (lg x + lg y)/2 (Notice : 书上写34,我怀疑是36...你怎么看?)
X^2 + Y^2 = 34xy
(x+y)^2 - 2xy = 34xy
(x+y) ^2 = 36xy
(x+y) ^2 = xy6^2
((x+y)/6)^2 = xy
2(lg(x+y)/6) = (lg x + lg y)
lg(x+y)/6 = (lg x + lg y)/2
Q4: Show that A^logc b = b^logc a
a^logc b = y
logc a^logc b = logc y
logc b * logc a = logc y
logc a * logc b = logc y
logc b^ logc a = logc y
b^ logc a = y = a^logc b |
|
|
|
|
|
|
|
|
|
|

楼主 |
发表于 12-4-2015 10:55 PM
|
显示全部楼层
完美解決我的問題,解釋得相當好,給妳個Like(笑)
另外,我又遇到了新問題,希望妳能幫忙解決。.gif)
Q1 : Solve each of the following equations.
(a) log_2 x + log_4 (4x) = -2 (Ans = 1/8)
(b) 3log_8 (2x+14) - 4log_16 (x+1) = 3 (Ans = 1)
(c) log_2 (1+x) - log_4 (9/4)^2 = 2 - log_8 (5-x)^3 (Ans = 2)
Q2 : Solve the equation In y = 3 + In (y-2),stating your answer correct to 3 significant figures. (Ans = 2.10)
Q3 : Solve each of the following inequalities.
(a)3^x+2 < 5^x-1 (x > 7.45)
(b)8^x+1 > 3^x+1 · 5^x (x < 1.56)
其實Q3的做法不是問題,問題在於箭頭的方向不對。能夠教我怎樣看箭頭的方向嗎.gif)
|
|
|
|
|
|
|
|
|
|
|

楼主 |
发表于 12-4-2015 10:58 PM
|
显示全部楼层
本帖最后由 kuboy1314 于 13-4-2015 06:47 PM 编辑
你的方法很有意思
問題解決了.gif)
可是,我還有新的問題要請教你
請看樓上的帖子.gif)
|
|
|
|
|
|
|
|
|
|
|
发表于 13-4-2015 01:13 PM
|
显示全部楼层
1)a) 你题目/答案打错了吧,把1/8sub 进去,得到 -3 +(-1/2) = -3.5
log_2 x + log_4 4x = -2
log_2 x + log_4 4x
= log_2 x + log_2 4x / log_2 4
= log_2 x + 1/2 (log_2 4 + log_2 x)
= log_2 x + 1+ 1/2 log_2 x
=1.5 log_2 x + 1 = -2
1.5 log_2 x = -3
log_2 x = -2
x = 1/4
b) 3 log_8 (2x+14) - 4 log_16 (x+1) = 3
3 (log_2 (2x+14) / log_2 8) - 4 (log_2 (x+1)/log_2 16) = 3
log_2 (2x+14) - log_2 (x+1) = 3
log_2 (2x+14)/(x+1) = 3
(2x+14)/(x+1) = 8
2x+14 = 8x+8
6x = 6
x = 1
c) log_2 (1+x) - log_4 (9/4)^2 = 2 - log_8 (5-x)^3
log_2 (1+x) + log_8 (5-x)^3 - log_4 (9/4)^2 = 2
log_2 (1+x) + 3 log_2 (5-x)/ log_2 8 - 2 log_2 (9/4) / log_2 4 = 2
log_2 (1+x) + log_2 (5-x) - log_2 (9/4) = 2
4/9 (1+x)(5-x) = 2^2 = 4
(1+x)(5-x) = 9
5+4x-x^2=9
x^2-4x+4=0
(x-2)^2=0
x=2
2) ln y = 3+ ln(y-2)
ln y - ln (y-2) = 3
ln y/(y-2) = 3
y/(y-2) = e^3
1+ 2/(y-2) = e^3
2/(y-2)=e^3 - 1
y-2 = 2/(e^3 - 1)
y = 2 + 2/(e^3 - 1)
=2.10479...
=2.10 (3 s.f.)^
3)
a) 3^x+2 < 5^x-1
ln (5^(x-1)) > ln (3^(x+2))
(x-1) (ln5) > (x+2) (ln3)
(x-1) > (x+2) (log_5 3)
x - (log_5 3)(x) > 1+2log_5 3
x (1-log_5 3) >1+2log_5 3
x >7.45
b) 8^x+1 > 3^x+1 · 5^x
log (8^(x+1)) > log (3^(x+1))(5^x)
(x+1) log 8 > (x+1) log 3 + x log 5
x (log8 - log3 - log5) > log3 - log8
x < (log3 - log8)/(log8-log3-log5) = 1.56
x < 1.56
请看 a and b,为何我在a没有换方向,可是在b却换了呢?原因很简单,在a,我最后移过去的是 1- log_5 3,大过0,所以不用换;在b,我最后移过去的是log8-log3-log5,小过0,所以要换。简单的说,就是把negative丢去对面(乘/除),inequality sign 就要换,要不然没有必要换。所以,其实照常做就好,注意一下把东西丢去对面除时是negative的就要换方向就对了。
|
|
|
|
|
|
|
|
|
|
|

楼主 |
发表于 13-4-2015 06:43 PM
|
显示全部楼层
紅色字的句子,我不是很明白怎樣形成,請妳說明一下。
2) ln y = 3+ ln(y-2)
ln y - ln (y-2) = 3
ln y/(y-2) = 3
y/(y-2) = e^3 (怎樣形成下面的句子?)
1+ 2/(y-2) = e^3
2/(y-2)=e^3 - 1
y-2 = 2/(e^3 - 1)
y = 2 + 2/(e^3 - 1)
=2.10479...
=2.10 (3 s.f.)^
|
|
|
|
|
|
|
|
|
|
|
发表于 13-4-2015 06:59 PM
|
显示全部楼层
y/(y-2)
= [(y-2)+2]/(y-2)
= (y-2)/(y-2) + 2/(y-2)
= 1 + 2/(y-2)
|
|
|
|
|
|
|
|
|
|
|

楼主 |
发表于 13-4-2015 07:44 PM
|
显示全部楼层
|
|
|
|
|
|
|
|
|
|
发表于 13-4-2015 08:50 PM
|
显示全部楼层
y - 2 + 2 = y + 0 = y
开学了么?酱勤劳自修?
|
|
|
|
|
|
|
|
|
|
|

楼主 |
发表于 13-4-2015 09:12 PM
|
显示全部楼层
原來還可以這樣做,明白了。
這樣也看得出來,你真厲害!(笑)
對我來說log有點難度,你的數學很好,是STPM學生嗎?
|
|
|
|
|
|
|
|
|
|
|
发表于 13-4-2015 10:47 PM
|
显示全部楼层
|
|
|
|
|
|
|
|
|
|

楼主 |
发表于 13-4-2015 11:09 PM
|
显示全部楼层
對啦 厲害啦(笑)
之後遇到的數學難題,希望你也能幫忙解決。.gif)
|
|
|
|
|
|
|
|
|
|
|

楼主 |
发表于 16-4-2015 02:05 AM
|
显示全部楼层
這幾道數學題
有點不好意思(問題太多)(笑)
π = 3.142
Q1: y = 4 cos(x - π/3) [sketch,for 0 ≤ x ≤ 2π] ———我想知道怎樣計算y,比如when x = 0
Q2: Given that x is an acute angle and sec x = k , express each of the following trigonometric ratios in terms of k .
(a) sin (-x) ans is -(k^2 - 1)^1/2 / k)
(b) csc (-x) ans is -k(k^2 -1)^1/2 / (k^2 - 1)
|
|
|
|
|
|
|
|
|
|
|
发表于 16-4-2015 09:22 PM
|
显示全部楼层
Q1: y = 4 cos(x - π/3) [sketch,for 0 ≤ x ≤ 2π] ———我想知道怎樣計算y,比如when x = 0
首先你要懂cos 的 graph张什么样子
y= cos x , y max =1, min = -1
y = 4cos x, y max =4 , min = -4
然后pi = 180, pi/3 = 60
x=0, y = 4 (cos( -60)) = 4(1/2) = 2
然后就sketech
Q2: Given that x is an acute angle and sec x = k , express each of the following trigonometric ratios in terms of k .
(a) sin (-x) ans is -(k^2 - 1)^1/2 / k)
sin^2 x + cos^2 x = 1
sin x = (1- cos^2 x)^(1/2)
= (1 - 1/sec^2 x)^(1/2)
= (1 -1/k^2)^(1/2)
=( (K^2 - 1)/k^2 ) ^ (1/2)
=(k^2 - 1)^(1/2)/ k)
sin -x = - sin x
= - (k^2 - 1)^(1/2)/ k)
(b) csc (-x) ans is -k(k^2 -1)^1/2 / (k^2 - 1)
cosec -x = 1/ sin -x
= - 1/ sin x
= - 1 / [(k^2 - 1)^(1/2)/ k] << from a,
= - k / (k^2 - 1)^(1/2)
= - k (k^2 - 1)^(1/2) / (k^2 - 1) <<< multiply (k^2 - 1)^(1/2) / (k^2 - 1)^(1/2)
tag @YetSin 很多时候做工回来懒惰解
|
|
|
|
|
|
|
|
|
|
|
发表于 16-4-2015 09:30 PM
|
显示全部楼层
|
|
|
|
|
|
|
|
|
|
发表于 16-4-2015 11:32 PM
|
显示全部楼层
本帖最后由 YetSin 于 16-4-2015 11:34 PM 编辑
1)其实,现在画一个cos的wave加一个横线在中间(X-axis)
然后就是找y-axis的地方。在60度是,y=4 cos 0 = 4,也就是最高点。0度的地方就是最高点的前60度。然后小心label就好。
2)
a)
sin (-x) = - sin (x)
= - \sqrt (1-cos^2 (x))
= - \sqrt (1- 1/k^2)
= - (\sqrt (k^2-1)) / k
b)
csc (-x) = 1/ sin(-x)
= -k / \sqrt (k^2-1) (从2a拿来的result,这个技巧在考试很重要,省很多时间啊)
= -k \sqrt(k^2-1)/(k^2-1) (乘 (k^2-1)/k^2-1) 就可以了) |
|
|
|
|
|
|
|
|
|
|

楼主 |
发表于 18-4-2015 07:04 PM
|
显示全部楼层
看看2(b)
假設我在不知道答案的情況下,我想我的答案會是 - k / (k^2 - 1)^(1/2) ,肯定不會想到還要multiply (k^2 - 1)^1/2 / (k^2 -1)^1/2
如果你在這個情況下,還會multiply嗎..? Why
另外
sin (-x) = -sin x
cos (-x) = cos x
tan (-x) = - tan x
為什麼cos是positive ,什麼情況下是negative..?
話說回來,你好像非常了解yetsin這位朋友(告訴我male or female,讓我也了解了解她) 哈哈
|
|
|
|
|
|
|
|
|
| |
本周最热论坛帖子
|