|
发表于 6-9-2008 08:47 PM
|
显示全部楼层
原帖由 不死的ProG 于 2008/9/6 08:28 PM 发表 
只有这种方法吗?
应该是吧。但我很肯定这个做法会比较容易。 |
|
|
|
|
|
|
|
发表于 6-9-2008 09:19 PM
|
显示全部楼层
这个也可以~不过他的比较容易~
cos3X- cos(90-X) = 0
-2sin((3X + 90 - X)/2)sin((3X - 90 + X)/2) = 0
sin [(2X +90)/2] = 0 or sin [(4X -90)/2] = 0
(2X + 90)/2 = 180n
(4X -90) /2 = 180n
[ 本帖最后由 详圣 于 6-9-2008 09:21 PM 编辑 ] |
|
|
|
|
|
|
|
发表于 9-9-2008 08:07 AM
|
显示全部楼层
90 ≠ 90° 
90 = 90×(180°/π) ≈ 5156.62° |
|
|
|
|
|
|
|
发表于 21-9-2008 04:12 PM
|
显示全部楼层
A hemisphere bowl of radius 12cm is initially full of water. Water runs out of a small hole at the bottom of the bowl at a rate of 48pi cm^3 s^-1. When the depth of the water is x cm , show that the depth is decreasing at a rate of 48/[x(24-x)] cm s^-1
Also, find the rate at which the depth is decreasing when
a) The bowl is full.
b)The depth is 6cm.
Another question is in this picture

Thanks in advance! Really urgent  |
|
|
|
|
|
|
| |
本周最热论坛帖子
|