|
又有疑问了...拍谢!
1. Write the equation of the line with gradient m and passes the point P(0,18). Showthat this line is the tangent to the circle with centre C(4,6) and theradius 10 units with m satisfies the equation 21m^2 -24m -11 = 0.
2. A point moves such that its distance from the point A(-2,3) is twice its distance from the point B(1,-1). Show that the locus of this point is a circle and state its centre and radius.
第一题不懂他的show是什么意思..
第二题的又怎样叫show?! |
|
|
|
|
|
|
|
发表于 18-4-2010 12:01 PM
|
显示全部楼层
第一题的line是y=mx+18
然后找circle的equation,把y带进去,然后用b^2-4ac
就可以拿到21m^2 -24m -11 = 0
第二题,你先写出distance from the point A(-2,3) is twice its distance from the point B(1,-1)的formula,然后simplify
最后你会拿到类似(x-a)^2+(y-b)^2=r^2的circle formula,就show到了
(a,b)是centre of circle,r是radius |
|
|
|
|
|
|
|
楼主 |
发表于 18-4-2010 12:08 PM
|
显示全部楼层
第一题的line是y=mx+18
然后找circle的equation,把y带进去,然后用b^2-4ac
就可以拿到21m^2 -24m -11 = ...
笨蛋一个 发表于 18-4-2010 12:01 PM
这句不是很明白~可以详细的解释吗? |
|
|
|
|
|
|
|
发表于 18-4-2010 12:12 PM
|
显示全部楼层
回复 3# lonely_world
y=mx+18
(x-4)^2+(y-6)^2=10^2
(x-4)^2+(mx+18-6)^2=10^2
expand
然后会拿到x^2(1+m^2)+x(24m-8)+60=0
然后用b^2-4ac就可以了 |
|
|
|
|
|
|
|
楼主 |
发表于 18-4-2010 12:26 PM
|
显示全部楼层
|
|
|
|
|
|
|
楼主 |
发表于 18-4-2010 01:02 PM
|
显示全部楼层
回复 4# 笨蛋一个
可是..这个有show到它是tangent咩? |
|
|
|
|
|
|
|
发表于 18-4-2010 02:47 PM
|
显示全部楼层
回复 6# lonely_world
y=18x是一条直线
(x-4)^2+(y-6)^2=10^2是圆圈
当这条直线碰到圆圈时,你要equal两个equation。
然后会拿到x^2(1+m^2)+x(24m-8)+60=0
当这条线碰到圆圈只有一次时,那条线是tangent。
所以x^2(1+m^2)+x(24m-8)+60=0只可以有一个unique root
要找unique root,用b^2-4ac=0就可以了 |
|
|
|
|
|
|
| |
本周最热论坛帖子
|