查看: 1307|回复: 5
|
帮忙做这几题数学
[复制链接]
|
|
prove
1)
(AUB)"n[(AuC)-(Buc)]=empty set
2) (AnB)-(AnC)=An(B-C)
3)(B-C)u(C-B)=(BuC)n(BnC)"
4)determine the value of a if [(square of 3)-ai]/[1-(square of 3)i]
请会做的帮帮忙 |
|
|
|
|
|
|
|
发表于 28-6-2009 12:29 PM
|
显示全部楼层
有错怕我纠正
1a)
LHS
=(AUB)''n{(AnC)-(BUC)}
=(AUB)n{(AnC)n(BUC)'
=(AUB)n{(AnC)n(B'nC')
={ (AnAnAnB'nCnC') U (AnBnBnB'nCnC')}
=(AnBn empty set) U (A n empty set)
= A n empty set
= empty set (proved)
2 LHS
= (AnB) n (AnC)'
= (AnB) n (A'UC')
=(AnBnA') U (AnBnC')
= (EMPTY SET n B) U (AnBnC')
= AnBnC'
= An(BnC')
= An (B-C)
3
LHS
= (BnC') U (CnB')
= (BUC) n (C'nB')
= (BUC) n (BnC)'' |
|
|
|
|
|
|
|
发表于 28-6-2009 05:22 PM
|
显示全部楼层
回复 2# walterchoo 的帖子
1......
=(AUB)n{(AnC)n(B'nC')
={ (AnAnAnB'nCnC') U (AnBnBnB'nCnC')}....
i don't understand for this step.. Can you show a clearer step? Thank you |
|
|
|
|
|
|
|
发表于 28-6-2009 07:58 PM
|
显示全部楼层
(AUB)'n[(AUC)-(BUC)]=empty set
(A' n B') n [ (A U C) n (B U C)']
(A' n B') n [ (A U C) n (B' n C')]
你rearrange的话,就会变成
B' n (A' n C') n (A U C)
B' n (A U C)' n (A U C)
B' n empty set
因为(A U C)' n (A U C) = empty set
B' n empty set = empty set (proved)
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
 (AnB)-(AnC)=An(B-C)
(A n B) n (A n C)'
(A n B) n (A' U C')
[A' n (A n B)] U [C' n (A n B)]
empty set U [A n (B n C')]
A n (B - C) (proved)
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(B-C)u(C-B)=(BuC)n(BnC)"
(B n C') U (C n B')
[B U (C n B')] n [C' U (C n B')]
[(B U C) n (B U B')] n [(C' U C) n (C' U B')]
As (B U B') and (C' U C) = universal set
Then,
(B U C) n (C' U B')
(B U C) n (B n C)' (Proved)
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
determine the value of a if [(square of 3)-ai]/[1-(square of 3)i]
什么是square of 3? |
|
|
|
|
|
|
|
发表于 29-6-2009 02:57 PM
|
显示全部楼层
(√3) -ai
1-(√3)i
determine the value of a if it is a real number and find this real number
楼主是这样才对吧
ace ahead,exam practice1,no.17
solution:
[(√3) -ai][1+(√3)i]
[1-(√3)i][1+(√3)i]
√3+3i-ai-√3ai2
12+(√3)2
√3+√3a+3i-ai
4
√3+√3a+(3-a)i
4
√3+√3a +(3-a)i
4 4
by comparing the real part and imaginary part
(3-a) = 0
4
(3-a) = 0
a=3
let the real number be x
x = √3+√3a
4
= √3+√3(3)
4
= √3+(3√3)
4
= 4√3
4
= √3
so the real number is √3 , and a=3
[ 本帖最后由 夜神锋 于 2-7-2009 04:52 PM 编辑 ] |
|
|
|
|
|
|
|
发表于 29-6-2009 05:52 PM
|
显示全部楼层
回复 5# 夜神锋 的帖子
这个有详细的答案哦!
去oxford fajar的网站找..... |
|
|
|
|
|
|
| |
本周最热论坛帖子
|