查看: 2242|回复: 14
|
probability的问题
[复制链接]
|
|
问题是这样。。
A smoke-detector system uses two devices,A and B. If smoke is present, the probability that it will be detected by device A is 0.95 ; device B is 0.98 ; by both devices is 0.94.
a. if smoke present, find the probability that the smoke will be detected by device A or B or both..
答案是0。99。。
请问是怎样算出来的?
我算来算去都算不到。。。 |
|
|
|
|
|
|
|
发表于 20-8-2008 12:06 AM
|
显示全部楼层
建议你画venn diagram出来看看,就很明白了。
答案是0.95+(0.98-0.94)=0.99
或0.98+(0.95-0.94)=0.99 |
|
|
|
|
|
|
|

楼主 |
发表于 20-8-2008 12:20 AM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 20-8-2008 01:18 AM
|
显示全部楼层
借题问问哦。。

请问怎么做呢? |
|
|
|
|
|
|
|
发表于 20-8-2008 02:14 PM
|
显示全部楼层
回复 4# khaishin 的帖子
(a) (i) 8C3*(0.68)^3(0.32)^5
(ii) 8C7*(0.68)^7(0.32) + (0.68)^8
(b) (i) P(z>1.25)
(ii) P(-1.25< z < -0.25)
[ 本帖最后由 flash 于 20-8-2008 02:15 PM 编辑 ] |
|
|
|
|
|
|
|
发表于 30-4-2010 12:06 AM
|
显示全部楼层
probability A=0.95-0.94=0.01
probability B=0.98-0.94=0.04
probability A or probability B or propability A and B= 0.01+0.04+0.94=0.99 |
|
|
|
|
|
|
|
发表于 3-5-2010 04:50 PM
|
显示全部楼层
借题一下。
the probability distribution of a discrete random variable X is given by
P(X=x)=k|x-2| ; x=-1,0,1,3
= 0 ; otherwise
A random sample of three values is taken from the distribution. find the probability that exactly one of the values is positive.
请大大解救! |
|
|
|
|
|
|
|
发表于 8-5-2010 05:54 AM
|
显示全部楼层
The probability distribution of a discrete random variable X is given by
P(X=x)=k|x-2| ; x=-1,0,1,3
= 0 ; otherwise
A random sample of three values is taken from the distribution. find the probability that exactly one of the values is positive.
P(X=-1)=3/7
P(X=0)=2/7
P(X=1)=1/7
P(X=3)=1/7
Y~B(3,2/7)
P(Y=1)=C(3,1)*(2/7)^1*(5/7)^2
=3*2*25/7^3 |
|
|
|
|
|
|
|
发表于 8-5-2010 11:22 AM
|
显示全部楼层
谢谢!
但是,如果是这样的做法,那就是说 after picking up 3 variables from the distribution, then we put them back 对吗? |
|
|
|
|
|
|
|
发表于 8-5-2010 08:22 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 8-5-2010 09:41 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 9-5-2010 02:16 AM
|
显示全部楼层
是的,刚开始做的时候我也是这样想
但是如果我不放回去的话
那么概率就会与题目中的不相等了
所以题目应该是暗示我们了 |
|
|
|
|
|
|
|
发表于 9-5-2010 11:23 AM
|
显示全部楼层
也对,谢谢你!感激感激~ |
|
|
|
|
|
|
|
发表于 1-6-2010 01:54 AM
|
显示全部楼层
本帖最后由 白羊座aries 于 1-6-2010 01:55 AM 编辑
P(AUB)=P(A)+P(B)-P(AnB)
sub 数字进去
借用主题:
If A and B are independent event, show that A and B' also independent
5分 |
|
|
|
|
|
|
|
发表于 1-6-2010 07:52 PM
|
显示全部楼层
本帖最后由 mathlim 于 1-6-2010 07:54 PM 编辑
如果A与B独立,则P(A∩B) = P(A)×P(B)。
P(B'∩A)
= P[(S\B)∩A)
= P(S∩A) - P(B∩A)
= P(A) - P(B∩A)
= P(A) - P(A)×P(B)
= [1 - P(B)]×P(A)
= P(B')×P(A)
所以B'与A也是独立的。 |
|
|
|
|
|
|
| |
本周最热论坛帖子
|