查看: 1069|回复: 2
|
有更快的办法计算吗?
[复制链接]
|
|
1 + 1/(1 + 2) + 1/(1 + 2 + 3) + 1/(1 + 2 + 3 + 4) + ... + 1/(1+2+3+4+5+6+7+8+9+10) |
|
|
|
|
|
|
|
发表于 30-8-2007 02:05 PM
|
显示全部楼层
1 + 2 + 3 + ... ... + n = n(n+1)/2
1/(1 + 2 + 3 + ... ... + n) = 2/n(n+1)
而 2/n(n+1) = 2/n - 2/(n+1)
∴ 1 + 1/(1+2) + 1/(1+2+3) + ... ... + 1/(1+2+3+4+5+6+7+8+9+10)
= [2/1 - 2/2] + [2/2 - 2/3] + [2/3 - 2/4] + ... ... + [2/10 - 2/11]
= 2 - 2/11
= 20/11
通项公式:
1 + 1/(1+2) + 1/(1+2+3) + ... ... + 1/(1+2+3+... ...+n)
= [2/1 - 2/2] + [2/2 - 2/3] + [2/3 - 2/4] + ... ... + [2/n - 2/(n+1)]
= 2 - 2/(n+1)
= 2n/(n+1)
当 n = 10,
1 + 1/(1+2) + 1/(1+2+3) + ... ... + 1/(1+2+3+4+5+6+7+8+9+10)
= 2×10/(10+1)
= 20/11 |
|
|
|
|
|
|
|
发表于 30-8-2007 02:15 PM
|
显示全部楼层
再教你一个方法,就是不要贪心,一步一步来。
1 = 2/2
1 + 1/3 = 4/3
1 + 1/3 + 1/6 = 4/3 + 1/6 = 9/6 = 3/2 = 6/4
1 + 1/3 + 1/6 + 1/10 = 3/2 + 1/10 = 16/10 = 8/5
1 + 1/3 + 1/6 + 1/10 + 1/15 = 8/5 + 1/15 = 25/15 = 5/3 = 10/6
.
.
.
归纳出:
1 + 1/3 + 1/6 + ... ... + 1/(1+2+3+... ...+n) = 2n/(n+1)
∴ 1 + 1/3 + 1/6 + ... ... + 1/(1+2+3+... ...+10) = 20/11 |
|
|
|
|
|
|
| |
本周最热论坛帖子
|