查看: 1984|回复: 20
|
calculus的问题(新问题)
[复制链接]
|
|
请高手帮忙,谢谢。
lim x->∞ (1-x) ln(x/(x-1))
[ 本帖最后由 menglee 于 6-11-2009 11:05 PM 编辑 ] |
|
|
|
|
|
|
|
发表于 28-10-2009 02:52 PM
|
显示全部楼层
图 404 - Not Found |
|
|
|
|
|
|
|
发表于 28-10-2009 10:40 PM
|
显示全部楼层

menggunakan takrif 的意思是不是用定义?
如果是纯粹用定义,我做不到!
我需要用到L'Hospital's Rule。
[ 本帖最后由 mathlim 于 28-10-2009 10:42 PM 编辑 ] |
|
|
|
|
|
|
|
发表于 29-10-2009 06:33 AM
|
显示全部楼层
By using definition, f'(1) is equal to the value of lim(x-->1) (exp(x-1)^2 - 1) / 2(x - 1).
Since (exp(x-1)^2 - 1) / 2(x - 1) ~ ( x-1 )^2 / 2( x-1 ) as x approaches 1, and lim(x-->1) ( x-1 )^2 / 2( x-1 ) = 0,
we have f'(1) = lim(x-->1) (exp(x-1)^2 - 1) / 2(x - 1) = lim(x-->1) ( x-1 )^2 / 2( x-1 ) = 0.
g(x) = f(1/2 x), by chain rule,
g'(x) = 1/2 f'(1/2 x)
Thus, g'(2) = 1/2 f'(1) =0
(h ° g)' (x) = h' (g(x)) g'(x) by chain rule again, so
(h°g)' (2) = h' (g(2)) g'(2) = - 2 * 0 = 0 |
|
|
|
|
|
|
|
发表于 29-10-2009 09:04 AM
|
显示全部楼层
我算到 f'(1) = 1/2。
f'(1) = lim(x→1) (exp(x-1)^2 - 1) / 2(x - 1)^2. |
|
|
|
|
|
|
|

楼主 |
发表于 29-10-2009 10:05 AM
|
显示全部楼层
如果用定义是不是lim(h-->0) ( f(1+h)-f(1) )/h?若果是那样的话只会拿到0啊,因为f(x)=0 at x=1 |
|
|
|
|
|
|
|
发表于 29-10-2009 11:56 AM
|
显示全部楼层
回复 6# menglee 的帖子
f'(1) = lim(h→0) { [f(1+h) - f(1)] / h }
= lim(h→0) { [(e^h² - 1)/(2h) - 0 ] / h }
= lim(h→0) { (e^h² - 1)/( 2h² ) }
...
...
[ 本帖最后由 mathlim 于 29-10-2009 11:58 AM 编辑 ] |
|
|
|
|
|
|
|

楼主 |
发表于 29-10-2009 03:32 PM
|
显示全部楼层
谢谢,已经做到了。
f'(1) = 1/2。
g'(2)=1/4
g(2)=2f(1)=0
(h°g)' (2) = h' (g(2)) g'(2) =h'(0) g'(2)= - 2(1/4 )= -1/2 |
|
|
|
|
|
|
|
发表于 31-10-2009 08:50 AM
|
显示全部楼层
原帖由 distantstar 于 29-10-2009 06:33 AM 发表 
By using definition, f'(1) is equal to the value of lim(x-->1) (exp(x-1)^2 - 1) / 2(x - 1).
Since (exp(x-1)^2 - 1) / 2(x - 1) ~ ( x-1 )^2 / 2( x-1 ) as x approaches 1, and lim(x-->1) ( x-1 )^2 / 2( ...
请问这是什么定理?
我没有学过! |
|
|
|
|
|
|
|
发表于 31-10-2009 08:51 AM
|
显示全部楼层
原帖由 menglee 于 29-10-2009 03:32 PM 发表 
谢谢,已经做到了。
f'(1) = 1/2。
g'(2)=1/4
g(2)=2f(1)=0
(h°g)' (2) = h' (g(2)) g'(2) =h'(0) g'(2)= - 2(1/4 )= -1/2
请问你是怎么用定义做到 f'(1) = 1/2 的? |
|
|
|
|
|
|
|
发表于 31-10-2009 09:45 AM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 31-10-2009 10:01 AM
|
显示全部楼层
原帖由 mathlim 于 31-10-2009 08:50 AM 发表 
请问这是什么定理?
我没有学过!
这是一种equivalence relation,通过这种方法可以绕过洛比答法则,迅速求得某些繁杂的极限。经典的equivalence relation有:
当x趋近于0时:
e^x - 1 ~ x
ln(1+x) ~ x
sinx ~ x
1- cosx ~ x^2 / 2
tanx ~ x
shx ~ x
thx ~ x
example: Find the limit of ln(cosx) / x^2 as x goes to 0:
ln(cosx) = ln(1+cosx -1) ~ cosx - 1 ~ -x^2/2
hence ln(cosx)/ x^2 ~ -x^2/2 / x^2 = -1/2
与洛比达法则相似,在一定条件下,这种方法不能被使用。 |
|
|
|
|
|
|
|
发表于 31-10-2009 03:53 PM
|
显示全部楼层
应该是用 taylor expansion 后拿partial sum 的前一两项来做 approximation 吧。 |
|
|
|
|
|
|
|
发表于 2-11-2009 01:30 AM
|
显示全部楼层
严格来说,还要确保taylor approximation的其余项迫近于0。对上述函数来说,这是正确的。可是,对一些另类的函数来说,这种approximation就不正确。 |
|
|
|
|
|
|
|

楼主 |
发表于 2-11-2009 06:09 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 2-11-2009 10:47 PM
|
显示全部楼层
原帖由 menglee 于 2-11-2009 06:09 PM 发表 
到最后用L' Hopital rule
那就不符合题目的要求咯! |
|
|
|
|
|
|
|

楼主 |
发表于 3-11-2009 05:52 PM
|
显示全部楼层
问题指的定义应该是lim(h-->0) ( f(1+h)-f(1) )/h吧。
不用L' Hopital rule我真的不会做。 |
|
|
|
|
|
|
|
发表于 3-11-2009 09:56 PM
|
显示全部楼层
应该就是用这个咯!
(exp(x-1)^2 - 1) / 2(x - 1) ~ ( x-1 )^2 / 2( x-1 ) as x approaches 1。 |
|
|
|
|
|
|
|

楼主 |
发表于 6-11-2009 11:07 PM
|
显示全部楼层
请高手帮忙,谢谢。
lim x->∞ (1-x) ln(x/(x-1)) |
|
|
|
|
|
|
|
发表于 8-11-2009 07:58 PM
|
显示全部楼层
lim x->∞ (1-x) ln(x/(x-1))
提示:用 L-hopital rule 看看 |
|
|
|
|
|
|
| |
本周最热论坛帖子
|