查看: 1368|回复: 4
|
integration
[复制链接]
|
|
这个怎样做@_@
intergrate sin^-1 ( x )
大家有什么网站有提供INTEGRATION /DIFFERENTIATION RULES吗?_?
找来找去找不到~>_<
顺便分享下刚找到的INTEGRATION SOFTWARE:
MULTIPLE INTEGRATION
LIMITED INTEGRATION
到www.download.com就有的下了~~
[ 本帖最后由 kjying 于 12-7-2008 01:13 PM 编辑 ] |
|
|
|
|
|
|
|
发表于 12-7-2008 02:53 PM
|
显示全部楼层
用integration by parts
int arc sin x
= x (arc sin x) - int [x/sqrt{1-x^2}]
= x (arc sin x) + sqrt{1-x^2} + c |
|
|
|
|
|
|
|

楼主 |
发表于 12-7-2008 08:24 PM
|
显示全部楼层
原帖由 hamilan911 于 12-7-2008 02:53 PM 发表 
用integration by parts
int arc sin x
= x (arc sin x) - int [x/sqrt{1-x^2}]
= x (arc sin x) + sqrt{1-x^2} + c
谢谢...明白了....
顺便~~
http://en.wikipedia.org/wiki/Integration_by_parts
在这里找到了ARC TAN的例子~~ |
|
|
|
|
|
|
|
发表于 14-7-2008 07:43 AM
|
显示全部楼层
借帖问下 。
double integrate
xcos(xy)cos^2(pai*x) dx dy=?
0<x<1/2
0<y<pai |
|
|
|
|
|
|
|
发表于 14-7-2008 09:16 PM
|
显示全部楼层
回复 4# ~Lucifer~ 的帖子
我的Int是integrate
Int( 0 to pi) Int( 0 to 1/2) x cos(xy) cos^2(pi x) dxdy
=Int( 0 to pi) Int( 0 to 1/2) x cos(xy) (1+ cos (pi x))/2 dxdy
=(1/2) Int( 0 to pi) Int( 0 to 1/2) x cos(xy) (1+ cos( 2 pi x)) dxdy
=(1/2) Int( 0 to pi) Int( 0 to 1/2) x cos(xy) + x cos(xy) cos (2 pi x) dxdy
=(1/2) Int( 0 to pi) Int( 0 to 1/2) x cos(xy) + x cos(xy) cos (2 pi x) dxdy
=(1/4) Int( 0 to pi) Int( 0 to 1/2) 2 x cos(xy) + x.[2 cos(xy) cos (2 pi x)] dxdy
=(1/4) Int( 0 to pi) Int( 0 to 1/2) 2 x cos(xy) + x.[ cos(2pi x + yx) + cos(2 pi x - yx) ] dxdy
=(1/4) Int( 0 to pi) Int( 0 to 1/2) 2 x cos(xy) + xcos(2pi x + yx) + xcos(2 pi x - yx) dxdy
Integration by parts
=(1/4) Int( 0 to pi) 2x sin(yx) - 2(1/y^2) cos(yx) + x[ sin(2 pi x+ yx)/(2pi +y) + sin(2 pi x- yx)/(2pi -y) ] - [ -cos (2 pi x+ yx)/(2pi +y)^2 - cos(2 pi x- yx)/(2pi -y)^2 ] (0 to pi) dy
然后,就这样子做下去应该是没有问题。。。 |
|
|
|
|
|
|
| |
本周最热论坛帖子
|