|
整理整理一下问过的问题:
1.设 S = 1/2 * 3/4 * 5/6 * ... * 99/100
试证:
(i) S < 1/10 (已解)(解对者:flyingfish)
(ii) S < 1/12 (已解)(解对者:sinchee)
(iii) 1/2*3/4*...*(2n - 1)/2n > √ (n + 1)/(2n + 1) (已解)(解对者:微中子)
2.设 x, y 为任意实数。
证明:
(i) |(sin x)^2 - (sin y)^2|≤ |x - y| (已解) (解对者:微中子,pipi)
(ii) |(sin x)^2 - (sin y)^2|≤ |x^2 - y^2| (已解) (解对者:微中子,pipi)
3. 若 x, y, z > 0
求证:
(i) (y/(y+x))^2 + (z/(z+y))^2 + (x/(x+z))^2 ≥ 3/4 (已解)(解对者:情~風)
(ii) (x/(y+z)) + (y/(x+z)) + (z/(x+y)) ≥ 3/2 (已解)(解对者:sinchee,梵谷)
(iii)(y/(y+x))^3 + (z/(z+y))^3 + (x/(x+z))^3 ≥ 3/8 (待解)
(iv) (x+y)^z + (x+z)^y + (y+z)^x > 2 (待解)
4.若a,b,c为正数, a+b+c=1,求证:
(i) (1/a - 1)(1/b - 1)(1/c - 1)≥ 8 (已解)(解对者:pipi)
(ii) (1/a + 1)(1/b + 1)(1/c + 1)≥ 64 (已解)(解对者:sinchee)
(iii) a^2 + b^2 + c^2 ≥ 1/3 (已解)(解对者:sinchee)
(iv) a^(-2) + b^(-2) + c^(-2) ≥ 27 (已解)(解对者:sinchee)
5.(sinchee 提供)
求证:
(i) 1 + 1/(1·2) + 1/(1·2·3) + ... + 1/(1·2...·n) < 2 (已解)(解对者:铁蛋)
(ii) 1/2^2 + 1/3^2 + ... + 1/n^2 < (n-1)/n [n>=2] (已解)(解对者:铁蛋)
(iii) [1·3·5...(2n-1)]/[2·4·6...(2n)] > sqrt(n+1) / (2n+1) (待解)
6.(第三题(ii)的一般化)
(待解)
6*.
(待解)
7.
(已解)(解对者:sinchee)
8. 若 a^2+b^2=1, c^2+d^2=1
求证: ac + bd <= 1 , ad + bc <=1 (已解)(解对者:sinchee)
9.(sinchee 提供)
设 a>=c, b>=c, c>=0, 求证
(i) sqrt[c(a-c)] + sqrt[c(b-c)] <= (a+b)/2 (已解)(解对者:sinchee)
(ii) sqrt[c(a-c)] + sqrt[c(b-c)] <= sqrt(ab) (已解)(解对者:pipi)
(不管是 已解 或 待解 的题目,欢迎网友们多多支持!让大家分享你们的 idea   
也欢迎你们提供好玩,有趣的问题   谢谢   )
[ Last edited by pipi on 31-8-2004 at 03:12 PM ] |
|
|
|
|
|
|
|
发表于 27-3-2004 02:25 AM
|
显示全部楼层
let s'<1/10 is true where s'=s/(9/10)=1/2*3/4*5/6*7/8*11/12...*99/100,s<s'
:.s=9/10*s'=0.9*s' where s'<0.1
:.s<0.09
since s=0.9s' and s<0.09
:.s'<0.1 is true
:.s<0.09 is true
:.s<1/10
不知道对不对,请多多指教!
[ Last edited by sMIL3 on 27-3-2004 at 02:28 AM ] |
|
|
|
|
|
|
|

楼主 |
发表于 29-3-2004 01:48 PM
|
显示全部楼层
let s'<1/10 is true where s'=s/(9/10)=1/2*3/4*5/6*7/8*11/12...*99/100,s<s'
(这个假设...有问题)
试想想,若这样子可行,那 s 便可小于任何号码。
p/s: 应该是 "Let ... be ..."
不可 "Let ... is ..."
共勉之。 |
|
|
|
|
|
|
|
发表于 29-3-2004 11:34 PM
|
显示全部楼层
?? 试想想,若这样子可行,那 s 便可小于任何号码。??
假设说,x<5,我们可以说x<6,x<7,当然不能说x<1啊!
怎么说? |
|
|
|
|
|
|
|

楼主 |
发表于 30-3-2004 08:36 AM
|
显示全部楼层
sMIL3 于 29-3-2004 11:34 PM 说 :
?? 试想想,若这样子可行,那 s 便可小于任何号码。??
假设说,x<5,我们可以说x<6,x<7,当然不能说x<1啊!
怎么说?
ok.
Let s'< a where s'=s/(a/10) (若这个假设可行)
This implies that s = (a/10)*s' < (a/10)*a = 1/10.
我们也可有以下的假设:
Let s'< a where s'=s/(a/b) (b是任何号码)
This implies that s = (a/b)*s' < (a/b)*a = 1/b. |
|
|
|
|
|
|
|
发表于 10-4-2004 10:17 PM
|
显示全部楼层
let A=1/2x3/4x5/6x......x99/100
let B= 2/3x4/5x..98/99
A.B= 1/100
A/B <1
A<B
A.A<A.B
A.A<1/100
A<1/10
<1/10这题微中子网友问过..
<1/12我就不会了.. |
|
|
|
|
|
|
|

楼主 |
发表于 11-4-2004 10:16 PM
|
显示全部楼层
flyingfish 于 10-4-2004 10:17 PM 说 :
<1/10这题微中子网友问过..
多谢提醒! |
|
|
|
|
|
|
|

楼主 |
发表于 26-4-2004 05:12 PM
|
显示全部楼层
设 S = 1/2 * 3/4 * 5/6 * ... * 99/100
试证:
(i) S < 1/10
(ii) S < 1/12
试试证明:
1/2 * 3/4 * 5/6 * ... * (2n-1)/(2n) <= 1/sqrt(3n+1) |
|
|
|
|
|
|
|
发表于 4-5-2004 08:31 AM
|
显示全部楼层
pipi 于 26-4-2004 05:12 PM 说 :
试试证明:
1/2 * 3/4 * 5/6 * ... * (2n-1)/(2n) <= 1/sqrt(3n+1)
比较 [(2n - 1)/2n]^2 和 (3n - 2)/(3n + 1) ,
(1 - 1/2n) ^2 - [1 - 3/(3n + 1)]
= - 1/n + 1/4n^2 + 3/(3n + 1) (展开)
= (1 - n)/[4n^2 (3n + 1)] (通分母)
因为 n >= 1,
1 - n <= 0, 且 4n^2 (3n + 1) > 0
(1 - n)/[4n^2 (3n + 1)] <= 0
所以 [(2n - 1)/2n]^2 <= (3n - 2)/(3n + 1)
即 (2n - 1)/2n <= √ (3n - 2)/ √ (3n + 1)
1/2*3/4*5/*...*(2n - 1)/2n <= 1/2*2/√7*√7/√10*...*√ (3n – 2)/ √ (3n + 1)
= 1/√ (3n + 1)
Special case,
当 n = 50 时,
{151 > 144 -> √151 > 12}
1/2*3/4*5/6*...*99/100 <= 1/√151 < 1/12
其他类似题,
试证 1/2*3/4*...*(2n - 1)/2n > √ (n + 1)/(2n + 1) |
|
|
|
|
|
|
|

楼主 |
发表于 5-5-2004 05:34 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 6-5-2004 01:04 AM
|
显示全部楼层
sinchee 于 4-5-2004 08:31 说 :
比较 [(2n - 1)/2n]^2 和 (3n - 2)/(3n + 1) ,
(1 - 1/2n) ^2 - [1 - 3/(3n + 1)]
= - 1/n + 1/4n^2 + 3/(3n + 1) (展开)
= (1 - n)/[4n^2 (3n + 1)] (通分母)
因为 n >= 1,
...
sinchee网友的方法太神奇了。。
pipi网友能想出这问题也太厉害了。。
一些想法:
试试把sinchee网友的方法generalise,可看出如何能找到1/(3n+1)^(1/2)..
设(an - c)/(an+b)为用于与[(2n - 1)/2n]^2
比较的function.
为了能让分子和前一项的分母约简,
(an+b)-(an-c)=a
b+c=a
c=a-b
function变成[an-(a-b)]/(an+b).
(1 - 1/2n) ^2 - [1 - a/(an + b)]
= - 1/n + 1/4n^2 + a/(an + b) (展开)
= (-4nb+an+b)/[4n^2 (an + b)] (通分母)
(-4nb+an+b)/[4n^2 (an + b)] <=0
[n(a-4b)+b]//[4n^2 (an + b)] <=0
1) 4n^2 (an + b)>=0
2) n(a-4b)+b<=0
能符合以上(1),(2)式子的a,b就能用,而
1/2 * 3/4 * 5/6 * ... * (2n-1)/(2n) <= [b/(an+b)]^(1/2)
[b/(an+b)]^(1/2)=1/[(a/b)n+1]^(1/2)
假如要用这方法找最近1/2 * 3/4 * 5/6 * ... * (2n-1)/(2n) 的[b/(an+b)]^(1/2)
要maximise (a/b)...
from (2),
an-b(4n-1)<=0 for all n
假如a,b都是正数,
(a/b)<=(4n-1)/n, for all n
for min n=1,
(a/b)<=3
一些问题:
1。为什么要与[(2n - 1)/2n]^2 比较?而不用其他的式子如[。。]^3等?
2。有没有方法找出比1/[(151)^(1/2)]更小而又大于S = 1/2 * 3/4 * 5/6 * ...
* 99/100的近似值? |
|
|
|
|
|
|
|
发表于 6-5-2004 10:46 AM
|
显示全部楼层
骗吃的,
让
2S = 3/4 * 5/6 * ... * (2n-1)/2n
S' = 2/3 * 4/5 * ... * (2n-2)/(2n-1) * (2n * 2(n+1))/(2n+1)^2
2SS' = 2 * 2(n+1)/(2n+1)^2
不过, 0 < 2n*2(n+1)/(2n+1)^2 = (4n^2 + 4n)/(4n^2 + 4n + 1) < 1, 如果n>0
而且, (2n-1)/2n > (2n-2)/(2n-1), n>0
2S>S'
所以,
2S > √(2SS') = 2√(n+1) / (2n+1)
S > √(n+1) / (2n+1)
1/2*3/4*...*(2n - 1)/2n > √ (n + 1)/(2n + 1) |
|
|
|
|
|
|
|
发表于 6-5-2004 11:05 PM
|
显示全部楼层
对啦!!
所谓:不管是黑猫白猫,会捉老鼠的就是好猫!
所以,不管是什么方法,证到答案的就是好方法!!! |
|
|
|
|
|
|
|

楼主 |
发表于 7-5-2004 12:31 PM
|
显示全部楼层
|
|
|
|
|
|
|

楼主 |
发表于 13-5-2004 03:52 PM
|
显示全部楼层
pipi 于 5-5-2004 05:34 PM 说 :
设 x, y 为任意实数。
证明:|(sin x)^2 - (sin y)^2|<= |x^2 - y^2|
给个提示:
(i) 若用三角学里的恒等式,最后得证 |sin(x)|<=|x|。
(ii) 若有修大学的微积分,用一个简单的定理(先买个关子)(不须用提示(i)),便行!!
[ Last edited by pipi on 13-5-2004 at 03:53 PM ] |
|
|
|
|
|
|
|
发表于 13-5-2004 04:26 PM
|
显示全部楼层
我这只三脚猫不懂能不能捉到老鼠呢?
x ≠ y, x ≠ -y
考虑
(sin x - sin y)/(x - y)
和
(sin x + sin y)/(x + y) = (sin x - sin (-y))/(x - (-y))
用Mean Value Theorem,
让f(x) = sin x
(f(x1) - f(x2))/(x1 - x2) = cos c, c 在 x1 和 x2之间.
所以,
|((sin x)^2 - (sin y)^2)/(x^2 - y^2)| = |sin c sin d|,
c 在 x 和 y 之间, d 在 x 和 -y 之间.
0 <= |sin c| <= 1
0 <= |sin d| <= 1
0 <= |sin c sin d| <= 1
所以,
|(sin x)^2 - (sin y)^2|<= |x^2 - y^2|
当 x = y, 0 < = 0
当 x = -y, 0 < = 0
对吗?
觉得好像不太好. |
|
|
|
|
|
|
|

楼主 |
发表于 13-5-2004 04:38 PM
|
显示全部楼层
|
|
|
|
|
|
|

楼主 |
发表于 14-5-2004 12:06 PM
|
显示全部楼层
微中子 于 13-5-2004 04:26 PM 说 :
用Mean Value Theorem,
让f(x) = sin x
(f(x1) - f(x2))/(x1 - x2) = cos c, c 在 x1 和 x2之间.
所以,
|((sin x)^2 - (sin y)^2)/(x^2 - y^2)| = |sin c sin d|,
c 在 x 和 y 之间, d 在 x 和 -y 之间.
应该是
"|((sin x)^2 - (sin y)^2)/(x^2 - y^2)| = |cos c cos d|,
c 在 x 和 y 之间, d 在 x 和 -y 之间"吧?? 
方法对了!!!
用同样的方法,可证
|(sin x)^2 - (sin y)^2|<= |x - y|
[ Last edited by pipi on 14-5-2004 at 12:07 PM ] |
|
|
|
|
|
|
|

楼主 |
发表于 14-5-2004 12:10 PM
|
显示全部楼层
若没有人再尝试,下个礼拜一我会贴上答案(用高中的三角学里的恒等式)。 |
|
|
|
|
|
|
|
发表于 14-5-2004 08:00 PM
|
显示全部楼层
|
|
|
|
|
|
| |
本周最热论坛帖子
|